
Improving Linux resource control using CKRM

Rik Van Riel
Red Hat Inc.

Hubertus Franke, Shailabh Nagar
IBM T.J. Watson Research Center

Chandra Seetharaman, Vivek Kashyap
IBM Linux Technology Center

Haoqiang Zheng
Columbia University

Outline

 Recap
– Motivation
– Architecture

 New since 2003
– Core redesign
– Resource Control Filesystem
– Hierarchies
– Schedulers

 Future Work

 Workload Management Requirements

 Modified resource principal is a group of processes (class)
– User-defined
– Dynamic
– Visible to OS kernel
– Support for automatic classification of new processes

 Privileged user defines class entitlements/shares
– Generally CPU, virtual/real memory
– I/O, network less common but useful

 Role of OS Kernel
– enforce shares
– monitor, export class usage

 State of art for high-end Unixes and Windows (?)
– HP-PRM/WLM, AIX WLM, Solaris, Tru64

Usage 1: Enterprise Servers

Webservers AppServer Transaction Server

● Class determined by
● who, what, where
● any workload attribute (not all
traditionally visible to kernel)

● Different QoS for each class:
● Response time, bandwidth

● Class boundaries change rapidly

Clients

A B

● Example Stock trading:
● Gold: high volume trader

 initiating a transaction
● Silver: all other stock trading
● Bronze: mutual fund transactions

 quotes

Usage 2: Shell server

 University shell server with different users
– Students: Low
– Staff/postdocs : High
– Accounts/Backup: Batch/Background
– OS Class Projects, Physics simulations

 Resource shares set from PAM module at login
 Email processing

– Charge to user being processed
– Automatic classification based on uid/app name

Usage 3: Desktop

 Protect apps from each other
– X
– Xmms
– Shell
– Mozilla

 User level control over app-class shares
– Done automatically by user's GUI

 Requirements
– Simple interface
– More tolerance for share enforcement inaccuracy
– Little need for monitoring

Usage 4: UML/vserver Virtual Hosting
 Virtual Hosting using UML/vserver, apps run as processes

under host system together with guest OS
 Every system resource needs to be regulated
 Service guarantees for each UML instance

UML Linux

Apps

UML Linux

Apps

UML Linux

Apps

Linux Host Operating System
CPU Mem Network I/O

B C

CKRM Architecture

Tasks

A

Hooks Socket

Workload Management
Middleware (Automated)Sys Admin (Manual)

Resource Control
File System

classify control monitor

automatic

Classification
Engine

(RBCE/CRBCE)

manual

fork, exec
setuid, setgid

listen

shares stat
s

Independent
Resource Schedulers

(CPU, RAM, I/O, AcceptQ)

Class

class-aware
allocation

Classtype:
task/socket

Per-res ctrlr objects

CKRM Main Components
 Classtypes

– Define kernel resource object to be grouped
– Independent dimension for all other components

 Classes
– Hierarchical grouping of kernel resource objects
– Associated shares of managed resources

 Classification Engine
– Policy-driven assignment of kernel objects to classes
– Notifications of kernel events to user level

 Resource Control Filesystem
– User API to CKRM

 Resource Controllers
– Class-aware enhancements to existing Linux schedulers
– Physical resources (CPU, Physical Memory, Disk I/O, Socket connections)
– Virtual resources (number of tasks)

Modular design

 Classtypes can be independently included
– One or more of task_classes, socket_classes

 Classification Engine completely optional
– manual classification always available

 Resource Control Filesystem interface
– replaceable with system call interface if necessary
– Filesystem implemented as a loadable module

 Completely independent controllers
– Independent data structures, kernel configuration
– Independent in-kernel operation

 May not be desirable in long term
 Coupling possible through user-level WLM components

– Decouples acceptance of scheduler patches in mainline kernel

User API (RCFS) Overview
 Directory = Class

– Filesystem hierarchy ~= Class Hierarchy and namespace
– /path/to/class represents the unique class name

 Virtual files = Class attributes
– Created automatically

 Standard filesytem operations = CKRM functional API
– mkdir/rmdir = create/delete class
– read/write virtual file = get/set attributes (shares, stats, config,classification rules,…..)
– File permissions/ownership used to restrict/delegate access to operations

C1

myC1 myC2

FILES
• stats
• shares
• members
• target/rcfs/c1

/rcfs/c1/myC1

Sys

C2

/rcfs

FILESFILES

FILES

FILES FILES

CE
rules

 CKRM Core Overview

 Classtypes
– Define kernel object being grouped

 Classes
– Group of kernel objects

 Kernel hooks
– CKRM code executed at significant kernel events such as fork,

exec, setuid, setgid, listen

 Classtypes
 Define kernel object being grouped

– Currently tasks (task_class), listening sockets (socket_class)
 Independent dimension for other components
 Each classtype has an associated

– Hierarchy of classes
– Set of resource controllers

 Mutually exclusive across classtypes

– Classification engine rules
– Directory in filesystem

 Automatically created when classtype configured

System

task_class socket_class ….[Future]…

/rcfs

 Classes
 Group of kernel objects
 Associated shares (lower and upper bounds)
 Hierarchical to allow further subdivision of resources

– Top Level shares controlled by privileged user, lower levels can be
delegated

 Manifest as directories in /rcfs
– Filesystem hierarchy under classtype mirrors class hierarchy

System

socket_class task_class

Gold

Buy

Browse

John_User

Music

Compile

Classification
 All kernel objects managed by a classtype need to be in some class

– Default class always present for each classtype
– Objects inherit parent’s classification unless manual/automatic

classification done
 Manual classification

– echo “<object identifier>” > /path/to/class/target
– echo “1324” > /rcfs/taskclass/tc1/target

 Classifies task with pid=1324 into tc1
– echo “127.0.0.1/80” > /rcfs/socket_class/nc1/target

 Classifes port 80 of ipv4 address into nc1
 Classification Engine (CE) assists in automatic classification
 Automatic classification points

– Conceptually any point where the kernel object’s attribute changes
 CKRM implements a useful subset which can be extended as need arises

– Tasks: fork(), exec(), setuid(), setgid()
– Sockets (for connection control): listen()

 Manual classification overrides CE, if latter present, until automatic
classification explicitly reenabled

– re-enablement by writing object id to /rcfs/ce/reclassify

Classification Engines
 Optional module for CKRM operation
 Can be custom-built outside CKRM project

– Only needs to adhere to CKRM’s “return classification” interface
– Module’s output is a recommendation that may be rejected by

CKRM core
 CKRM provides two rule-based classification engines
 RBCE (Rule-Based Classification Engine)

– Flexible classification using rule matching
– Expected to meet manual system administration needs

 CRBCE (enhancements to RBCE)
– Supplies user space with data useful for goal-oriented workload

management
– Expected to meet WLM middleware needs

RBCE
 Classification rule

– { [(attr,value)]+ -> class }
– Attributes of task: uid, gid, executable name, application tag
– Created by echoing terms to /rcfs/ce/rules/<rulename>

 Classification rules ordered
– Matched in order at classification point by CE module
– “Catch-all” rule advisable for no-match case

 Application tags
– Additional flexibility for grouping based on application specific criteria

 Application informs WLM of transaction start
 WLM sets application tag
 Application tag used in classifying application processes

system

socket_class task_class ce

rules FILES = rules
(user-created)
r1, r2…r3

FILES = attributes
(automatic)
• reclassify
• state
• info

CRBCE and Resource monitoring

Periodic
kernel events

Aperiodic Kernel
events

Workload Manager Agent

User

Kernel

Data flow
Control flow

Classification

Engine

Module

User level daemon

State (pid, gid, start_time, end_time… + delay data) for active and
completed processes

Fork, Exec, Exit,
Setuid, Setgid

reclassify

 get delays/samples

Self-restarting
kernel timer

Commands

Records for each significant
kernel event push state to user space

Maintaining state in kernel
• difficult to do ..
• unbound in requirements
• additional complexity

delay
patch

Shares

 Distinguish for each resource
– limit (upper bound)
– guarantee (lower bound)

 No oversubscription, no starvation !
 Parent provides a base (think 100%)

– max_limit, total_guarantee
 Child gets a relative fraction

– limit < max_limit(parent)
– guarantee/total_guarantee(parent)

 Actual Shares received
– determined by path…

 Changing shares
– Possible without touching siblings’ values

 echo “res=cpu, guarantee=50, total_guarantee=100” \
 > /rcfs/taskclass/R/X/shares

P

C1 C2

X

R <100,100>

 <50,100>

 <20,60>

 <50,100>

50/60 * 20/100 * 50/100 = 8.3%

Stats

 cat /path/to/class/stats
 Multiple lines from each active controller

– Prefer one statistic per line a la vmstat
– Data, interpretation is controller specific

 Leaf nodes updated accurately
– Parents updated lazily

Resource Controllers
 Each task associated with a class

– Task resource requests queued by class
– Explicit or implicit per-class queues

 Control
– Share based preferential service to class queues

 Monitoring
– Additionally maintain class statistics

 Network classes
– Not tied to tasks but ipaddress:port
– controlled similarly

 Controllers provided
– CPU
– Physical Memory (preliminary port available)
– Disk I/O bandwidth (CFQv2 based port expected 8/04)
– Inbound Socket Connections

 Virtual resource controller for number of tasks
– template
– Prevent fork bombs

 Other controllers can be developed as needed

Resource Controller Status

CKRM CPU Scheduler

Class
Ticks

Run queue

Share

Top_prio

●Each class has its own runqueue

●Minimal changes to the existing scheduler:
●same runqueue structure
●same way to calculate time_slice,
sleep_average and prio, etc.
●same O(1) behavior within class

●get_next_task() now makes 2 decision
●First selects the next class to run
●Then, within that class select the
top priority task just as today

● Class Selection:

● Based on accumulative normalized time per class
● ecp(C) = ticks(C)/share(C)
● monotonic increasing function

● Select class C with min(ecp(C))

● Consider finite sliding window CWIN [min..min+WS]
● min=min(ecp(C)); WS ~ 128,256

● When a class is reactivated (task is rescheduled)
●if (min <= ecp(C) < min+WS)
then insert C at WIN[ecp(C)]
else insert C at WIN[min].

● Provides fairness (shares) only

● Urgency (Interactivity)
● ecp(C) = (ticks(C)/share(C)) * scale + top_prio
● High priority in class gives a short term boost

● Scheduler maintains O(1) characteristics

Scheduling Overhead

 Measured using Lmbench
– lat_ctx -s 0 $N, N=(2..256)

 Scalability: the overhead of Class Fair
Scheduler increases at about the same pace
as Linux 2.5 Scheduler

 The static overhead (class – linux) varies
from 0.14us to 0.63us during the
measurement

 Since class selection is O(1), i.e.
Independent of #classes, there are no
scalability concerns with #classes

 Code optimization might further reduce the
static overhead

Managing hierarchies
 Traversing hierarchies costly
 Lazy monitoring and control

– Update parent usage
– Redistribute effective share
– Kernel thread or user space
– Reusable for different controllers

/rcfs/taskclass

50 50

25 2525 25 25

effective share 25 25 50 0

no tasks

100

Inbound Connection Control

 Using Accept Queue classes
 Classify using (local, remote) * (IP, port)

– Iptables rules to MARK SYN packets
 Split single accept queue into multiple queues

– Assign shares to classes/queues
– Use weighted round robin to accept packets

 Inbound connections accepted in proportion to shares
assigned
– Response time proportionally reduced

 Drawbacks
– Classification hard in presence of proxies and multiple

classes on same remote host

AcceptQ Experimental Setup

 Server
– Httpd (apache) webserver with default config
– ckrm with 'ckrm_listenaq' controller

 Two clientsrunning httperf
 Use iptables on the server to assign MARK values to

connection requests from the client machines. The
MARK values are assigned based on the client
machines' IP addresses

 httperf run multiple times on each client against the
server with each run corresponding to a different
share setting for the clients.
– default class = 90, class 1 = 10
– default class = 40, class 1 = 60

AcceptQ: Reply Rate

AcceptQ: Response Time

CKRM Memory Control

 Share is #maximum physical pages used per class
– hard/soft, min/max variants also possible

 Only control page reclaimation
– classes can exceed shares if no memory pressure

 No distinction between over-share classes
– reclaim as many pages as needed by shrink_cache()

 Use global active/inactive lists
– maintains global LRU order
– overhead of repeated scans of under-share pages

 Experimenting with alternate schemes

CKRM I/O Scheduler
 CFQ v2 variant

– Kernel enforcement of non-
hierarchical shares

– User-level, lazy enforcement
of hierarchical shares

 Future experimental work
– Add anticipation

 Wait and service next
request from same task
until class share
exceeds high-water
mark

– Add deadlines
 Sort/fifo lists for each

class

Block layer

weighted select
+ sort

Dequeue

Low-level
Device Driver

per-class
pending
queues

Enqueue

dispatch queue

merge

 Complete port of remaining schedulers to RCFS API
– PlanetLab vserver + CKRM prototype

 Testing, optimization of hierarchical control
 Investigate suggestions from Kernel Summit'04

– Separate per-controller classes
 Visible to user ?

– Reuse kernel data structures like struct user ?
 Explore merger of monitoring with related projects

– ELSA/CSA

Future Work

Class-based Kernel Resource Management

Rik Van Riel
Red Hat Inc.

Hubertus Franke, Shailabh Nagar
IBM T.J. Watson Research Center

Chandra Seetharaman, Vivek Kashyap
IBM Linux Technology Center

Haoqiang Zheng
Columbia University

http://ckrm.sf.net

