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 Workload Management Requirements

 Modified resource principal is a group of processes (class)
– User-defined
– Dynamic 
– Visible to OS kernel
– Support for automatic classification of new processes

 Privileged user defines class entitlements/shares 
– Generally CPU, virtual/real memory
– I/O, network less common but useful

 Role of OS Kernel 
– enforce shares
– monitor, export class usage

 State of art for high-end Unixes and Windows (?)
– HP-PRM/WLM, AIX WLM, Solaris, Tru64



Usage 1: Enterprise Servers

Webservers AppServer Transaction Server

● Class determined by
● who, what, where
● any workload attribute (not all
traditionally visible to kernel)

● Different QoS for each class:
● Response time, bandwidth

● Class boundaries change rapidly

Clients

A B

● Example Stock trading:
● Gold:     high volume trader

              initiating a transaction
● Silver:   all other stock trading  
● Bronze: mutual fund transactions

              quotes



Usage 2: Shell server

 University shell server with different users
– Students: Low
– Staff/postdocs : High
– Accounts/Backup: Batch/Background
– OS Class Projects, Physics simulations

 Resource shares set from PAM module at login
 Email processing

– Charge to user being processed
– Automatic classification based on uid/app name



Usage 3: Desktop

 Protect apps from each other
– X 
– Xmms 
– Shell
– Mozilla

 User level control over app-class shares
– Done automatically by user's GUI

 Requirements
– Simple interface
– More tolerance for share enforcement inaccuracy
– Little need for monitoring



Usage 4: UML/vserver Virtual Hosting
 Virtual Hosting using UML/vserver, apps run as processes 

under host system together with guest OS
 Every system  resource needs to be regulated
 Service guarantees for each UML instance

UML Linux

Apps

UML Linux

Apps

UML Linux

Apps

Linux Host Operating System
CPU     Mem      Network    I/O 
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CKRM Architecture
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CKRM Main Components
 Classtypes

– Define kernel resource object to be grouped
– Independent dimension for all other components

 Classes
– Hierarchical grouping of kernel resource objects
– Associated shares of managed resources

 Classification Engine
– Policy-driven assignment of kernel objects to classes
– Notifications of kernel events to user level 

 Resource Control Filesystem
– User API to CKRM

 Resource Controllers
– Class-aware enhancements to existing Linux schedulers
– Physical resources (CPU, Physical Memory, Disk I/O, Socket connections)
– Virtual resources (number of tasks)



Modular design

 Classtypes can be independently included
– One or more of task_classes, socket_classes

 Classification Engine completely optional
– manual classification always available

 Resource Control Filesystem interface
– replaceable with system call interface if necessary
– Filesystem implemented as a loadable module 

 Completely independent controllers
– Independent data structures, kernel configuration
– Independent in-kernel operation

 May not be desirable in long term 
 Coupling possible through user-level WLM components

– Decouples acceptance of scheduler patches in mainline kernel 



User API (RCFS) Overview
 Directory = Class

– Filesystem hierarchy  ~= Class Hierarchy and namespace
– /path/to/class represents the unique class name

 Virtual files = Class attributes 
– Created automatically

 Standard filesytem operations = CKRM functional API
– mkdir/rmdir  = create/delete class
– read/write  virtual file  =  get/set attributes (shares, stats, config,classification rules,…..)
– File permissions/ownership used to restrict/delegate access to operations

C1

myC1 myC2

FILES
•  stats
•  shares
•  members
•  target/rcfs/c1

/rcfs/c1/myC1

Sys

C2

/rcfs

FILESFILES

FILES

FILES FILES

CE
rules



 CKRM Core Overview

 Classtypes 
– Define kernel object being grouped

 Classes 
– Group of kernel objects

 Kernel hooks 
– CKRM code executed at significant kernel events such as fork, 

exec, setuid, setgid, listen



 Classtypes
 Define kernel object being grouped

– Currently tasks (task_class),  listening sockets (socket_class)
 Independent dimension for other components
 Each classtype has an associated 

– Hierarchy of classes
– Set of resource controllers

 Mutually exclusive across classtypes

– Classification engine rules
– Directory in filesystem 

 Automatically created when classtype configured

System

task_class socket_class ….[Future]…

/rcfs



 Classes
 Group of kernel objects
 Associated shares (lower and upper bounds)
 Hierarchical to allow further subdivision of resources

– Top Level shares controlled by privileged user, lower levels can be 
delegated

 Manifest as directories in /rcfs
– Filesystem hierarchy under classtype mirrors class hierarchy

System

socket_class task_class

Gold

Buy

Browse

John_User

Music

Compile



Classification
 All kernel objects managed by a classtype need to be in some class

– Default class always present for each classtype
– Objects inherit parent’s classification unless manual/automatic 

classification done
 Manual classification

– echo “<object identifier>”  > /path/to/class/target 
– echo “1324” > /rcfs/taskclass/tc1/target  

 Classifies task with pid=1324 into tc1
– echo “127.0.0.1/80” > /rcfs/socket_class/nc1/target

 Classifes port 80 of ipv4 address into nc1
 Classification Engine (CE) assists in automatic classification
 Automatic classification points

– Conceptually any point where the kernel object’s attribute changes
 CKRM implements a useful subset which can be extended as need arises

– Tasks: fork(), exec(), setuid(), setgid()
– Sockets (for connection control): listen()

 Manual classification overrides CE, if latter present, until automatic 
classification explicitly reenabled 

– re-enablement by writing object id to /rcfs/ce/reclassify



Classification Engines
 Optional module for CKRM operation
 Can be custom-built outside CKRM project

– Only needs to adhere to CKRM’s “return classification” interface
– Module’s output is a recommendation that may be rejected by 

CKRM core
 CKRM provides two rule-based classification engines
 RBCE (Rule-Based Classification Engine)

– Flexible classification using rule matching
– Expected to meet manual system administration needs

 CRBCE (enhancements to RBCE)
– Supplies user space with data useful for goal-oriented workload 

management
– Expected to meet WLM middleware needs



RBCE
 Classification rule

– {    [  (attr,value)  ]+    ->   class }
– Attributes of task: uid, gid, executable name, application tag
– Created by echoing terms to /rcfs/ce/rules/<rulename> 

 Classification rules ordered
– Matched in order at classification point by CE module
– “Catch-all” rule advisable for no-match case

 Application tags
– Additional flexibility for grouping based on application specific criteria

 Application informs WLM of transaction start
 WLM sets application tag
 Application tag used in classifying application processes

system

socket_class task_class ce

rules FILES = rules
(user-created)
r1, r2…r3 

FILES = attributes
(automatic)
• reclassify
• state
• info



CRBCE and Resource monitoring

Periodic
kernel events 

Aperiodic Kernel 
events 

Workload Manager Agent

User 

Kernel

Data flow
Control flow

Classification

Engine

Module

User level daemon 

State (pid, gid, start_time, end_time… + delay data) for active and 
completed processes

Fork, Exec, Exit, 
Setuid, Setgid

reclassify

 get delays/samples

Self-restarting 
kernel timer

Commands

Records for each significant 
kernel event push state to user space

Maintaining state in kernel
• difficult to do ..
• unbound in requirements
• additional complexity

delay
patch



Shares

 Distinguish for each resource 
– limit (upper bound)
– guarantee (lower bound)

 No oversubscription, no starvation !
 Parent provides a base (think 100%)

– max_limit, total_guarantee
 Child gets a relative fraction

– limit < max_limit(parent)
– guarantee/total_guarantee(parent)

 Actual Shares received
– determined by path…

 Changing shares 
– Possible without touching siblings’ values

  
     echo “res=cpu, guarantee=50, total_guarantee=100” \
     > /rcfs/taskclass/R/X/shares

P

C1 C2

X

R <100,100>

 <50,100>

 <20,60>

 <50,100>

50/60 * 20/100 * 50/100 = 8.3%



Stats

 cat  /path/to/class/stats
 Multiple lines from each active controller

– Prefer one statistic per line a la vmstat
– Data, interpretation is controller specific

 Leaf nodes updated accurately
– Parents updated lazily



Resource Controllers
 Each task associated with a class

– Task resource requests queued by class
– Explicit or implicit per-class queues

 Control
– Share based preferential service to class queues

 Monitoring
– Additionally maintain class statistics 

 Network classes
– Not tied to tasks  but ipaddress:port 
– controlled similarly 



 Controllers provided 
– CPU 
– Physical Memory (preliminary port available)
– Disk I/O bandwidth (CFQv2 based port expected 8/04)
– Inbound Socket Connections 

 Virtual resource controller for number of tasks
– template
– Prevent fork bombs

 Other controllers can be developed as needed

Resource Controller Status



CKRM CPU Scheduler

Class 
Ticks

Run queue

Share

Top_prio

●Each class has its own runqueue

●Minimal changes to the existing scheduler: 
●same runqueue structure
●same way to calculate time_slice, 
sleep_average and prio, etc.
●same O(1) behavior within class

●get_next_task() now makes 2 decision
●First selects the next class to run
●Then, within that class select the 
top priority task just as today

● Class Selection:

● Based on accumulative normalized time per class
● ecp(C)  = ticks(C)/share(C) 
● monotonic increasing function

● Select class C with min(ecp(C))

● Consider finite sliding window CWIN [min..min+WS]
● min=min(ecp(C));    WS   ~ 128,256

● When a class is reactivated (task is rescheduled)
●if  (min <= ecp(C) < min+WS)
then    insert C   at   WIN[ecp(C)]
else    insert C   at   WIN[min].

● Provides fairness (shares) only

● Urgency (Interactivity)
● ecp(C)  = (ticks(C)/share(C)) * scale   + top_prio
● High priority in class gives a short term boost

● Scheduler maintains O(1) characteristics



Scheduling Overhead 

 Measured using Lmbench 
– lat_ctx -s 0 $N,   N=(2..256)

 Scalability: the overhead of Class Fair 
Scheduler increases at about the same pace 
as Linux 2.5 Scheduler

 The static overhead (class – linux) varies 
from 0.14us to 0.63us during the 
measurement

 Since class selection is O(1), i.e. 
Independent of #classes, there are no 
scalability concerns with #classes

 Code optimization might further reduce the 
static overhead



Managing hierarchies
 Traversing hierarchies costly
 Lazy monitoring and control

– Update parent usage
– Redistribute effective share
– Kernel thread or user space
– Reusable for different controllers 

/rcfs/taskclass

50 50

25 2525 25 25

effective share 25 25 50 0

no tasks

100



Inbound Connection Control

 Using Accept Queue  classes
 Classify using (local, remote) * (IP, port)

– Iptables rules to MARK SYN packets
 Split single accept queue into multiple queues

– Assign shares to classes/queues
– Use weighted round robin to accept packets

 Inbound connections accepted in proportion to shares 
assigned
– Response time proportionally reduced

 Drawbacks
– Classification hard in presence of proxies and multiple 

classes on same remote host



AcceptQ Experimental Setup

 Server 
– Httpd (apache) webserver with default config
– ckrm with 'ckrm_listenaq' controller 

 Two clientsrunning httperf 
 Use iptables on the server to assign MARK values to 

connection requests from the client machines. The 
MARK values are assigned based on the client 
machines' IP addresses

 httperf run multiple times on each client against the 
server with each run corresponding to a different 
share setting for the clients. 
– default class = 90, class 1 = 10
– default class = 40, class 1 = 60



AcceptQ: Reply Rate



AcceptQ: Response Time



CKRM Memory Control

 Share is #maximum physical pages used per class
– hard/soft,  min/max variants also possible

 Only control page reclaimation
– classes can exceed shares if no memory pressure 

 No distinction between over-share classes 
– reclaim as many pages as needed by shrink_cache() 

 Use global active/inactive lists
– maintains global LRU order
– overhead of  repeated scans of under-share pages 

 Experimenting with alternate schemes



CKRM I/O Scheduler
 CFQ v2 variant 

– Kernel enforcement of non-
hierarchical shares

– User-level, lazy enforcement 
of hierarchical shares

 Future experimental work
– Add anticipation 

 Wait and service next 
request from same task 
until class share 
exceeds high-water 
mark

– Add deadlines
 Sort/fifo lists for each 

class

Block layer

weighted select
+ sort

Dequeue 

Low-level
Device Driver

per-class
pending
queues

Enqueue

dispatch queue

merge



 Complete port of remaining schedulers to RCFS API
– PlanetLab vserver + CKRM prototype

 Testing, optimization of hierarchical control
 Investigate suggestions from Kernel Summit'04

– Separate per-controller classes
 Visible to user ?

– Reuse kernel data structures like struct user ?
 Explore merger of monitoring with related projects

– ELSA/CSA

Future Work
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