
Improving Linux resource control using CKRM

Rik Van Riel
Red Hat Inc.

Hubertus Franke, Shailabh Nagar
IBM T.J. Watson Research Center

Chandra Seetharaman, Vivek Kashyap
IBM Linux Technology Center

Haoqiang Zheng
Columbia University

Outline

 Recap
– Motivation
– Architecture

 New since 2003
– Core redesign
– Resource Control Filesystem
– Hierarchies
– Schedulers

 Future Work

 Workload Management Requirements

 Modified resource principal is a group of processes (class)
– User-defined
– Dynamic
– Visible to OS kernel
– Support for automatic classification of new processes

 Privileged user defines class entitlements/shares
– Generally CPU, virtual/real memory
– I/O, network less common but useful

 Role of OS Kernel
– enforce shares
– monitor, export class usage

 State of art for high-end Unixes and Windows (?)
– HP-PRM/WLM, AIX WLM, Solaris, Tru64

Usage 1: Enterprise Servers

Webservers AppServer Transaction Server

● Class determined by
● who, what, where
● any workload attribute (not all
traditionally visible to kernel)

● Different QoS for each class:
● Response time, bandwidth

● Class boundaries change rapidly

Clients

A B

● Example Stock trading:
● Gold: high volume trader

 initiating a transaction
● Silver: all other stock trading
● Bronze: mutual fund transactions

 quotes

Usage 2: Shell server

 University shell server with different users
– Students: Low
– Staff/postdocs : High
– Accounts/Backup: Batch/Background
– OS Class Projects, Physics simulations

 Resource shares set from PAM module at login
 Email processing

– Charge to user being processed
– Automatic classification based on uid/app name

Usage 3: Desktop

 Protect apps from each other
– X
– Xmms
– Shell
– Mozilla

 User level control over app-class shares
– Done automatically by user's GUI

 Requirements
– Simple interface
– More tolerance for share enforcement inaccuracy
– Little need for monitoring

Usage 4: UML/vserver Virtual Hosting
 Virtual Hosting using UML/vserver, apps run as processes

under host system together with guest OS
 Every system resource needs to be regulated
 Service guarantees for each UML instance

UML Linux

Apps

UML Linux

Apps

UML Linux

Apps

Linux Host Operating System
CPU Mem Network I/O

B C

CKRM Architecture

Tasks

A

Hooks Socket

Workload Management
Middleware (Automated)Sys Admin (Manual)

Resource Control
File System

classify control monitor

automatic

Classification
Engine

(RBCE/CRBCE)

manual

fork, exec
setuid, setgid

listen

shares stat
s

Independent
Resource Schedulers

(CPU, RAM, I/O, AcceptQ)

Class

class-aware
allocation

Classtype:
task/socket

Per-res ctrlr objects

CKRM Main Components
 Classtypes

– Define kernel resource object to be grouped
– Independent dimension for all other components

 Classes
– Hierarchical grouping of kernel resource objects
– Associated shares of managed resources

 Classification Engine
– Policy-driven assignment of kernel objects to classes
– Notifications of kernel events to user level

 Resource Control Filesystem
– User API to CKRM

 Resource Controllers
– Class-aware enhancements to existing Linux schedulers
– Physical resources (CPU, Physical Memory, Disk I/O, Socket connections)
– Virtual resources (number of tasks)

Modular design

 Classtypes can be independently included
– One or more of task_classes, socket_classes

 Classification Engine completely optional
– manual classification always available

 Resource Control Filesystem interface
– replaceable with system call interface if necessary
– Filesystem implemented as a loadable module

 Completely independent controllers
– Independent data structures, kernel configuration
– Independent in-kernel operation

 May not be desirable in long term
 Coupling possible through user-level WLM components

– Decouples acceptance of scheduler patches in mainline kernel

User API (RCFS) Overview
 Directory = Class

– Filesystem hierarchy ~= Class Hierarchy and namespace
– /path/to/class represents the unique class name

 Virtual files = Class attributes
– Created automatically

 Standard filesytem operations = CKRM functional API
– mkdir/rmdir = create/delete class
– read/write virtual file = get/set attributes (shares, stats, config,classification rules,…..)
– File permissions/ownership used to restrict/delegate access to operations

C1

myC1 myC2

FILES
• stats
• shares
• members
• target/rcfs/c1

/rcfs/c1/myC1

Sys

C2

/rcfs

FILESFILES

FILES

FILES FILES

CE
rules

 CKRM Core Overview

 Classtypes
– Define kernel object being grouped

 Classes
– Group of kernel objects

 Kernel hooks
– CKRM code executed at significant kernel events such as fork,

exec, setuid, setgid, listen

 Classtypes
 Define kernel object being grouped

– Currently tasks (task_class), listening sockets (socket_class)
 Independent dimension for other components
 Each classtype has an associated

– Hierarchy of classes
– Set of resource controllers

 Mutually exclusive across classtypes

– Classification engine rules
– Directory in filesystem

 Automatically created when classtype configured

System

task_class socket_class ….[Future]…

/rcfs

 Classes
 Group of kernel objects
 Associated shares (lower and upper bounds)
 Hierarchical to allow further subdivision of resources

– Top Level shares controlled by privileged user, lower levels can be
delegated

 Manifest as directories in /rcfs
– Filesystem hierarchy under classtype mirrors class hierarchy

System

socket_class task_class

Gold

Buy

Browse

John_User

Music

Compile

Classification
 All kernel objects managed by a classtype need to be in some class

– Default class always present for each classtype
– Objects inherit parent’s classification unless manual/automatic

classification done
 Manual classification

– echo “<object identifier>” > /path/to/class/target
– echo “1324” > /rcfs/taskclass/tc1/target

 Classifies task with pid=1324 into tc1
– echo “127.0.0.1/80” > /rcfs/socket_class/nc1/target

 Classifes port 80 of ipv4 address into nc1
 Classification Engine (CE) assists in automatic classification
 Automatic classification points

– Conceptually any point where the kernel object’s attribute changes
 CKRM implements a useful subset which can be extended as need arises

– Tasks: fork(), exec(), setuid(), setgid()
– Sockets (for connection control): listen()

 Manual classification overrides CE, if latter present, until automatic
classification explicitly reenabled

– re-enablement by writing object id to /rcfs/ce/reclassify

Classification Engines
 Optional module for CKRM operation
 Can be custom-built outside CKRM project

– Only needs to adhere to CKRM’s “return classification” interface
– Module’s output is a recommendation that may be rejected by

CKRM core
 CKRM provides two rule-based classification engines
 RBCE (Rule-Based Classification Engine)

– Flexible classification using rule matching
– Expected to meet manual system administration needs

 CRBCE (enhancements to RBCE)
– Supplies user space with data useful for goal-oriented workload

management
– Expected to meet WLM middleware needs

RBCE
 Classification rule

– { [(attr,value)]+ -> class }
– Attributes of task: uid, gid, executable name, application tag
– Created by echoing terms to /rcfs/ce/rules/<rulename>

 Classification rules ordered
– Matched in order at classification point by CE module
– “Catch-all” rule advisable for no-match case

 Application tags
– Additional flexibility for grouping based on application specific criteria

 Application informs WLM of transaction start
 WLM sets application tag
 Application tag used in classifying application processes

system

socket_class task_class ce

rules FILES = rules
(user-created)
r1, r2…r3

FILES = attributes
(automatic)
• reclassify
• state
• info

CRBCE and Resource monitoring

Periodic
kernel events

Aperiodic Kernel
events

Workload Manager Agent

User

Kernel

Data flow
Control flow

Classification

Engine

Module

User level daemon

State (pid, gid, start_time, end_time… + delay data) for active and
completed processes

Fork, Exec, Exit,
Setuid, Setgid

reclassify

 get delays/samples

Self-restarting
kernel timer

Commands

Records for each significant
kernel event push state to user space

Maintaining state in kernel
• difficult to do ..
• unbound in requirements
• additional complexity

delay
patch

Shares

 Distinguish for each resource
– limit (upper bound)
– guarantee (lower bound)

 No oversubscription, no starvation !
 Parent provides a base (think 100%)

– max_limit, total_guarantee
 Child gets a relative fraction

– limit < max_limit(parent)
– guarantee/total_guarantee(parent)

 Actual Shares received
– determined by path…

 Changing shares
– Possible without touching siblings’ values

 echo “res=cpu, guarantee=50, total_guarantee=100” \
 > /rcfs/taskclass/R/X/shares

P

C1 C2

X

R <100,100>

 <50,100>

 <20,60>

 <50,100>

50/60 * 20/100 * 50/100 = 8.3%

Stats

 cat /path/to/class/stats
 Multiple lines from each active controller

– Prefer one statistic per line a la vmstat
– Data, interpretation is controller specific

 Leaf nodes updated accurately
– Parents updated lazily

Resource Controllers
 Each task associated with a class

– Task resource requests queued by class
– Explicit or implicit per-class queues

 Control
– Share based preferential service to class queues

 Monitoring
– Additionally maintain class statistics

 Network classes
– Not tied to tasks but ipaddress:port
– controlled similarly

 Controllers provided
– CPU
– Physical Memory (preliminary port available)
– Disk I/O bandwidth (CFQv2 based port expected 8/04)
– Inbound Socket Connections

 Virtual resource controller for number of tasks
– template
– Prevent fork bombs

 Other controllers can be developed as needed

Resource Controller Status

CKRM CPU Scheduler

Class
Ticks

Run queue

Share

Top_prio

●Each class has its own runqueue

●Minimal changes to the existing scheduler:
●same runqueue structure
●same way to calculate time_slice,
sleep_average and prio, etc.
●same O(1) behavior within class

●get_next_task() now makes 2 decision
●First selects the next class to run
●Then, within that class select the
top priority task just as today

● Class Selection:

● Based on accumulative normalized time per class
● ecp(C) = ticks(C)/share(C)
● monotonic increasing function

● Select class C with min(ecp(C))

● Consider finite sliding window CWIN [min..min+WS]
● min=min(ecp(C)); WS ~ 128,256

● When a class is reactivated (task is rescheduled)
●if (min <= ecp(C) < min+WS)
then insert C at WIN[ecp(C)]
else insert C at WIN[min].

● Provides fairness (shares) only

● Urgency (Interactivity)
● ecp(C) = (ticks(C)/share(C)) * scale + top_prio
● High priority in class gives a short term boost

● Scheduler maintains O(1) characteristics

Scheduling Overhead

 Measured using Lmbench
– lat_ctx -s 0 $N, N=(2..256)

 Scalability: the overhead of Class Fair
Scheduler increases at about the same pace
as Linux 2.5 Scheduler

 The static overhead (class – linux) varies
from 0.14us to 0.63us during the
measurement

 Since class selection is O(1), i.e.
Independent of #classes, there are no
scalability concerns with #classes

 Code optimization might further reduce the
static overhead

Managing hierarchies
 Traversing hierarchies costly
 Lazy monitoring and control

– Update parent usage
– Redistribute effective share
– Kernel thread or user space
– Reusable for different controllers

/rcfs/taskclass

50 50

25 2525 25 25

effective share 25 25 50 0

no tasks

100

Inbound Connection Control

 Using Accept Queue classes
 Classify using (local, remote) * (IP, port)

– Iptables rules to MARK SYN packets
 Split single accept queue into multiple queues

– Assign shares to classes/queues
– Use weighted round robin to accept packets

 Inbound connections accepted in proportion to shares
assigned
– Response time proportionally reduced

 Drawbacks
– Classification hard in presence of proxies and multiple

classes on same remote host

AcceptQ Experimental Setup

 Server
– Httpd (apache) webserver with default config
– ckrm with 'ckrm_listenaq' controller

 Two clientsrunning httperf
 Use iptables on the server to assign MARK values to

connection requests from the client machines. The
MARK values are assigned based on the client
machines' IP addresses

 httperf run multiple times on each client against the
server with each run corresponding to a different
share setting for the clients.
– default class = 90, class 1 = 10
– default class = 40, class 1 = 60

AcceptQ: Reply Rate

AcceptQ: Response Time

CKRM Memory Control

 Share is #maximum physical pages used per class
– hard/soft, min/max variants also possible

 Only control page reclaimation
– classes can exceed shares if no memory pressure

 No distinction between over-share classes
– reclaim as many pages as needed by shrink_cache()

 Use global active/inactive lists
– maintains global LRU order
– overhead of repeated scans of under-share pages

 Experimenting with alternate schemes

CKRM I/O Scheduler
 CFQ v2 variant

– Kernel enforcement of non-
hierarchical shares

– User-level, lazy enforcement
of hierarchical shares

 Future experimental work
– Add anticipation

 Wait and service next
request from same task
until class share
exceeds high-water
mark

– Add deadlines
 Sort/fifo lists for each

class

Block layer

weighted select
+ sort

Dequeue

Low-level
Device Driver

per-class
pending
queues

Enqueue

dispatch queue

merge

 Complete port of remaining schedulers to RCFS API
– PlanetLab vserver + CKRM prototype

 Testing, optimization of hierarchical control
 Investigate suggestions from Kernel Summit'04

– Separate per-controller classes
 Visible to user ?

– Reuse kernel data structures like struct user ?
 Explore merger of monitoring with related projects

– ELSA/CSA

Future Work

Class-based Kernel Resource Management

Rik Van Riel
Red Hat Inc.

Hubertus Franke, Shailabh Nagar
IBM T.J. Watson Research Center

Chandra Seetharaman, Vivek Kashyap
IBM Linux Technology Center

Haoqiang Zheng
Columbia University

http://ckrm.sf.net

