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Abstract

One of the next challenges faced in Linux ker-
nel development is providing support for work-
load management. Workloads with diverse and
dynamically changing resource demands are
being consolidated on larger symmetric mul-
tiprocessors. At the same time, it is desir-
able to reduce the complexity and manual in-
volvement in workload management. We argue
that the goal-oriented workload managers that
can satisfy these conflicting objectives require
the Linux kernel to provide class-based dif-
ferentiated service for all the resources that it
manages. We discuss an extensible framework
for class-based kernel resource management
(CKRM) that provides policy-driven classifica-
tion and differentiated service of CPU, mem-
ory, I/O and network bandwidth. The pa-
per describes the design and implementation
of the framework in the Linux 2.6 kernel. It
shows how CKRM is useful in various scenar-
ios including the desktop. It also presents pre-
liminary performance evaluation results that
demonstrate the viability of the approach.

1 Introduction

Workload management is an increasingly im-
portant requirement of modern enterprise com-
puting systems. There are two trends driving
the development of enterprise workload man-
agement middleware. One is the consolida-
tion of multiple workloads onto large symmet-
ric multiprocessors (SMPs) and mainframes.
Their diverse and dynamic resource demands
require workload managers (WLMs) to pro-
vide efficient differentiated service at finer time
scales to maintain high utilization of expensive
hardware. The second trend is the move to-
wards specification of workload performance
in terms of the business importance of the
workload rather than in terms of low-level sys-
tem resource usage. This has led to the increas-
ing use of goal-oriented workload managers,
described shortly, which are more tightly inte-
grated into the business processes of an enter-
prise.

Traditional system administration tools have
been built with two layers. The lower, OS spe-
cific layer deals with modifying and monitor-
ing operating system parameters. The upper
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layer(s) provide an OS independent API, gen-
erally through a graphical user interface, allow-
ing a multi-tier or clustered system to be man-
aged through a unified API despite containing
heterogenous operating systems. While such
tools provide a convenient administrative inter-
face to heterogeneous operating systems they
do little to address the complexity of managing
workloads that span multiple tiers. The burden
of translating business goals into workload re-
source requirements and the latter into OS spe-
cific tuning parameters remains on the system
administrators. Increasing workload consoli-
dation only adds more complexity to an already
onerous problem.

As described in [7], the first stage in improving
workload management areentitlement-based
workload managers (WLMs) such as [9, 5,
11] which enforce entitlements or shares on
resources consumed by groups of processes,
users, etc. This allows the more important
groupings to see improved response times and
higher bandwidth due to preferential access to
the server hardware. As importantly, it allows
expensive SMP servers to have higher utiliza-
tions since system administrators can afford to
load them more without fear of penalizing the
important groupings.

However, the complexity of determining the
right entitlements (henceforth called shares)
for a grouping remains on the human system
administrator. Not only does s/he need to map
the importance of a workload to its entitle-
ments, s/he also needs to adjust these shares
dynamically when the demand and/or impor-
tance ofanyworkload changes. Such dynamic
share changes have become increasingly diffi-
cult to compute in a timely manner when man-
ual involvement is part of the adaptive feed-
back loop.

To address the complexity of share specifica-
tions, goal-oriented workload managershave

been developed [1, 10] which allow a system
to be more self-managed. Such WLMs allow
the human system administrator to specify high
level performance objectives in the form of
policies, closely aligned with the business im-
portance of the workload. The WLM middle-
ware then uses adaptive feedback control over
OS tuning parameters to realize the given ob-
jectives.

In mainstream operating systems, including
Linux, the control of key resources such as
memory, CPU time, disk I/O bandwidth and
network bandwidth is typically strongly tied
to processes, tasks and address spaces and are
highly tuned to maximize system utilization.
This introduces additional complexity to the
WLM which needs to translate the QoS re-
quirements into these low level per task re-
quirements, tough typically QoS is enforced at
work class level. Hence, in order to isolate the
autonomic goal oriented layers of the system
management from the intricacies of the operat-
ing system, we introduce the class concept into
the operating system kernel and require the OS
to provide differentiated service for all major
resources at a class granularity defined by the
WLM.

In this paper, we discuss a framework
called class-based kernel resource manage-
ment (CKRM) that implements this support
under Linux. In CKRM, a class is defined as
a dynamic grouping of OS objects of a particu-
lar type (classtype) and defined through poli-
cies provided by the WLM. Each class has
an associated share of each of its resources.
For instance, CKRM tasks classes provides re-
source management for four principal physi-
cal resources managed by the kernel namely
CPU time, physical memory pages, disk I/O
and bandwidth. Sockets classes provide in-
bound network bandwidth resource control.
The Linux resource schedulers are modified to
provide differentiated service at a class granu-
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larity based on the assigned shares. The WLM
can dynamically modify the composition of a
class and its share in order to meet higher level
business goals. We evaluate the performance
of the CKRM using simple benchmarks that
demonstrate the efficacy of its approach.

This work makes several contributions that dis-
tinguish it from previous related work such
as resource containers [2] and cluster reserves
[4]. First, it describes the design of a flexi-
ble kernel framework for class-based manage-
ment that can be used to manage both phys-
ical and virtual resources (such as number of
open files). The framework allows the vari-
ous resource schedulers and classification en-
gine to be developed and deployed indepen-
dent of each other. Second, it shows how in-
cremental modifications to existing Linux re-
source schedulers can make them provide dif-
ferentiated service effectively at a class granu-
larity. To our knowledge, this is the first open-
source resource management package that at-
tempts to provide control over all the major
physical resources—i.e., CPU, memory, I/O,
and network. Third, it provides a policy-driven
classification engine that eases the develop-
ment of new higher level WLMs and enables
better coordination between multiple WLMs
through policy exchange. Thirdly, through the
resource class filesystem the WLM goals can
be manipulated by normal users, making it use-
ful on the desktop. Finally, it develops a tag-
ging mechanism that allows server applications
to participate in their resource management in
conjunction with the WLM.

The rest of the paper is organized as follows.
Section 2 gives an overview of CKRM and
its core bits. Sections 3 briefly describes the
classification engine. Section 4 presents the
facilities provided by CKRM for monitoring.
The inbound network controller, the first ma-
jor controller ported to CKRM’s new interface,
is described in Section 5. Section 6 describes

the filesystem interface which replaces the sys-
tem call interface used in CKRM’s earlier de-
sign presented in OLS 2003 [13]. Section 7
describes how CKRM might be used, both on a
desktop system and on some server workloads.
Section 8 concludes with directions for future
work in the project.

2 Framework

A typical WLM defines a workload to be any
system work with a distinct business goal.
From a Linux operating system’s viewpoint,
a workload is a set of kernel tasks executing
over some duration. Some of these tasks are
dedicated to this workload. Other tasks, run-
ning server applications such as database or
web servers, perform work for multiple work-
loads. Such tasks can be viewed as executing in
phases with each phase dedicated to one work-
load. Server tasks can explicitly inform the
WLM of its phase by setting an application tag.
A WLM can also infer the phase by monitoring
significant system events such as forks, execs,
setuid, etc. and classifying the server task as
best as possible.

In this scenario, a WLM translates a high
level business goal of a workload (say response
time) into system goals for the set of tasks ex-
ecuting the workload. The system goals are
a set of delays seen by the workload in wait-
ing for individual resources such as CPU ticks,
memory pages, etc. The WLM monitors the
business goals, possibly using application as-
sistance, and the system usage of its resources.
If the business goal is not being met, it identi-
fies the system resource(s) which form a per-
formance bottleneck for the workload and ad-
justs the workload’s share of the resource ap-
propriately. The CKRM framework enables a
WLM to regulate workloads through a number
of components, as shown in Fig. 1:
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Figure 1: CKRM lifecycle

Core: The core defines the basic entities used
by CKRM and serves as the link between all
the other components. A class is a group of
kernel objects with an associated set of con-
traints for resource controllers operating on
those kernel objects—e.g., a class could con-
sist of a group of tasks which have a joint share
of cpu time and resident page frames. Each
class has an associated classtype which identi-
fies the kernel object being grouped. CKRM
currently defines two classtypes calledtask_
class and socket_class for grouping
tasks and sockets. For brevity, the term
taskclass and socketclass will be used to de-
note a class of classytpetask_class and
socket_class respectively. Classtypes can
be enabled selectively and independent of each
other. A user not interested in network reg-
ulation could choose to disablesocket_
class es. Classes in CKRM are hierarchical.
Children classes can be defined to subdivide
the resources allocated to the parent.

Classification engine (CE): This optional
components assists in the association of kernel
objects to classes of its associated classtype.
Each kernel object managed by CKRM is al-

ways associated with some class. If no classes
are defined by the user, all objects belong to
the default class for the classtype. At sig-
nificant kernel events such as fork, exec, se-
tuid, listen, when the attributes of a kernel
object are changed, the Core queries the CE,
if one is present, to get the class into which
the object should be placed. CE’s are free
to use any logic to return the classification.
CKRM provides a rule-based classification en-
gine (RBCE) which allows privileged users to
define rules which use attribute matching to
return the class. RBCE is expected to meet
the needs of most users though they can define
their own CE’s or choose not to have any and
rely upon manual classification of each kernel
object through CKRM’s rcfs user interface (de-
scribed later).

Resource Controllers: Each classtype has a
set of associated resource controllers, typi-
cally one for each resource associated with the
classtype—e.g., taskclasses have cpu, memory,
and I/O controllers to regulate the cpu ticks,
resident page frames and per-disk I/O band-
width consumed by it while socketclasses have
an accept queue controller to regulate the num-



Linux Symposium 2004 • Volume Two • 515

ber of TCP connections accepted by member
sockets. Resource requests by a kernel ob-
ject in a class are regulated by the correspond-
ing resource controller, if one exists and is en-
abled. The resource controllers are deployed
independent of each other so a user interested
only in controlling CPU time for taskclasses
could choose to disable the memory and I/O
controllers (as well as the socketclass classtype
and all its resource controllers).

Resource Control File System (RCFS): It
forms the main user-kernel interface for
CKRM. Once RCFS is mounted, it provides
a hierarchy of directories and files which can
be manipulated using well-known file opera-
tions such as open, close, read, write, mkdir,
rmdir and unlink. Directories of rcfs corre-
spond to classes. User-kernel communication
of commands and responses is done through
reads/writes to virtual files in the directories.
Writes to the virtual files trigger CKRM Core
functions and responses are available through
reads of the same virtual file.

The CKRM architecture outlined above
achieves three major objectives:

• Efficient, class-based differentiation of re-
source allocation and monitoring for dy-
namic workloads: Regulate and moni-
tor kernel resource allocation by classes
which are defined by the privileged user
and not only in terms of tasks. The differ-
entiation should work in the face of rela-
tively rapid changes in class membership
and over roughly the same time intervals
at which process-centric regulation cur-
rently works.

• Low overhead for non-users: Users disin-
terested in CKRM’s functionality should
see minimum overhead even if CKRM
support is compiled into the kernel. Signs
of user disinterest include omitting to

mount rcfs or not defining any classes.
Even for users, CKRM tries to keep over-
heads proportional to the features used.

• Flexibility and extensibility through min-
imization of cross-component dependen-
cies: Classification engines should be
independent of classtypes and optional,
classtypes should be independent of each
other and so should resource controllers,
even within the same classtype. This goal
is achieved through object-oriented inter-
faces between components. Minimizing
dependencies allows kernel developers to
selectively include components based on
their perception of its utility, performance
and stability. It also permits alternative
versions of the components to be used de-
pending on the target environment—e.g.,
embedded Linux distributions could have
a different set of taskclass resource con-
trollers (or even classtypes) than server-
oriented distributions.

3 Classification

The Classification Engine (CE) is an optional
component that enables CKRM to automati-
cally classify kernel objects within the con-
text of its classtype. Since the CE is optional
and since we want to main flexibility in its
implementation, functionality and deployment,
it is supplied as a dynamically loadable mod-
ule. The CE interacts with CKRM core as fol-
lows. The CKRM core defines a set of ckrm
events that constitute a point during execution
where a kernel object could potentially change
its class. A classtype can register a callback at
any of these events. As an example, the task
class hooks the fork, exec, exit, setuid, set-
gid calls where as the socket class hooks the
listen and accept calls. In these callbacks the
classtypes typically invoke the optional CE to
obtain a new class. If no CE is registered or the
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CE does not determine a class, the object re-
mains in its current class, otherwise the object
is moved to the new class and the correspond-
ing resource managers of that class’s type are
informed about the switch.

For every classtype the CE wants to provide au-
tomatic classification for, it registers a classifi-
cation callback with the classtype and the set of
events to which the callback is limited to. The
task of CE is then to provide a target class for
the kernel objects passed in the context of the
classtype. For instance, task classes pass only
the task, while socket classes pass the socket
kernel object as well as the task object. Though
the implementation of the classification en-
gine is completely independent of CKRM, the
CKRM project provides a default classifica-
tion, called RBCE, that is based on classifica-
tion rules. Rules consist of a set of rule terms
and a target class. A rule term specifies one
particular kernel object attribute, a compari-
sion operator (=,<,>,!) and a value expression.
To speed up the classification process we main-
tain state with tasks about which rules and rule
terms have been examined for a particular task
and only reexamine those terms that are indi-
cated by the event. RBCE provides rules based
on task parameters ((pid, gid, uid, executable)
and socket information (IP info). The rules in
conjunction with the defined classes constitute
a site policy for workload managment and is
dynamically changable (See user interface sec-
tion) into the RBCE. Hence, this approach en-
sures the separation of policy and enforcement.

To facilitate the interaction with WLMs to pro-
vide event monitoring and tracing, the CE can
also register a notification callback with any
classtype, that is called when a kernel object is
assigned to a new class. Similar so the classi-
fication callback, the notification callback can
be limited to a set of ckrm events. This facil-
ity is utilized in resource monitoring, described
next.

4 Monitoring

We now describe the monitoring infrastruc-
ture. Strictly speaking, the per-class monitor-
ing components are part of CKRM while the
per-process components are not. However, we
shall describe them together as they both can
be utilized by goal-based WLMs. Furthermore,
they are bundled with the classification engine
and utilize the CE’s notification callback to ob-
tain classification events. The monitoring in-
frastructure illustrated in Fig. 2 is based on the
following design principles:

1. Event-driven: Every significant event in
the kernel that affectsthe state of a task is
recorded and reported back to the state-
agent. The events of importance are aperi-
odic such as process fork, exit and reclas-
sification as well as periodic events such
as sampling. Commands sent by the state-
agent are also treated as events by the ker-
nel module.

2. Communication Channel: A single logi-
cal communication channel is maintained
between the state-agent and the kernel
module and is used for transferring all
commands and data. Most of the data flow
is from the kernel to user space in the form
of records resulting from events.

3. Minimal Kernel State: The design mini-
mizes the additional per-process state that
needs to be maintained within the kernel.
Most of the state needed for high level
control purposes is kept within the state
agent and updated through the records
sent by the kernel.

The state-agent, which can also be integrated
within a WLM, maintains state on each exist-
ing and exited task in the system and provides
it to the WLM. Since the operating system
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does not retain the state of exited processes, the
stateagent must maintain it for future consump-
tion by the WLM. The state-agent communi-
cates with a kernel module through a single
bidirectional communication chan-nel, receiv-
ing updates to the process state in the form of
records and occasionally sending com-mands.
Events in the kernel such as process fork, exit,
reclassify (resulting from change in any pro-
cess attribute such as gid, pid) cause records to
be generated through functions provided by the
kernel module.

Server tasks can assist the WLM by inform-
ing it about the phase in which they are oper-
ating (each phase corresponds to a workload).
Such tasks invoke CKRM to set a tag associ-
ated with theirtask_struct in the kernel.
CKRM uses this event to reclassify the task
and also records the event (to be transmitted
to the WLM through the state-agent). Other
kernel events that might cause a task to be re-
classified (such as the exec and setuid system
calls, etc.) are also noted by CKRM and passed
to the WLM through the state-agent. In ad-
dition, CKRM performs periodic sampling of
each task’s state in the kernel to determine the
resource it is waiting on (if any), its resource
consumption so far and the class to which it be-
longs. The sample information is transmitted
to the state-agent. The WLM can correlate the
information with the tag setting to statistically
determine the resource consumption and de-
lays of both server and dedicated processes ex-
ecuting a workload. Sampling is done through
a kernel module function that is invoked by a
selfrestarting kernel timer. Commands sent by
the state-agent cause appropriate functions in
the kernel module to execute and also return
data in the form of records. The kernel com-
ponents are kept simple and only minimal ad-
ditional state has to be maintained in the ker-
nel. In particular, the kernel does not have
to maintain extra state about exited processes
which introduces problems with PID reusage,

memory management to name a few. Instead,
relevant task information is replicated in user
space, is by definition received in the correct
time order (see below) and can be kept around
until the WLM has consumed the information.
Furthermore, the semantics of a reclassification
in the kernel, which identifies a new phase in a
server process, does not have to be introduced
into the kernel space.

The following small changes are required
to the linux kernel to track system delays.
The struct delay_info is added to the
task_struct . Delay_info contains 32-bit
variables to store cpu delay, cpu using, io de-
lay and memory io delay. The counters pro-
vide micro second accuracy. The current cpu
scheduler records timestamps whenever i) a
task becomes runnable and is entered into a
runqueue and ii) when a context switch occurs
from one task to another. We use these same
timestamps to get per-task cpu wait and cpu
using times recorded respectively. I/O delays
are measured by the difference of timestamps
taken when a task blocks waiting for I/O to
complete and when it returns. All I/O is nor-
mally attributed to the blocking task. Page-
fault delays, however, are treated as special
I/O delays. On entrance to and exit from the
page fault handler the task is marked or un-
marked as being in a memory path using flags
in task_struct . If during the I/O delay,
this flag is set, the I/O delay is counted as
a memory delay instead of as a pure I/O de-
lay. The per-task delay information is accessi-
ble through the file/proc/<pid>/delay .
Similarly, each class contains adelay_info
structure.

In contrast to the precise accounting of delays,
sampling examines the state of tasks at fixed
interval. In particular, we sample at fixed inter-
vals (~1sec) the entire set of tasks in the system
and increment per task counters that are inte-
grated into the task private structure attached
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by the classification engine that builds the core
of the kernel module. We increment counters
if a task is running, waiting to run, performing
I/O or handles a pagefault I/O. Task data (sam-
pled and/or precise) is requested by and sent
to the state-agent in coarser intervals. We can
send data in continuous aggregate mode or in
delta mode, i.e. only if task data has changed
do we send a new data record and then reset
the local counters. The task transition events
are sent at the time they occur. We distinguish
the fork, exit, and reclassification events as
records. At each reclassification (which could
potentially be the end of a phase) we transmit
the sample and delay data and reset them lo-
cally.

As a communication channel we utilize the
linux relayfs pseudo filesystem, a highly effi-
cient mechanism to share data between kernel
and user space. The user accesses the shared
buffers, called channels, as files, while the ker-
nel writes to them using buffer reservations and
memory read/write operations. The content
and structure of the buffer is determined by the
kernel and user client. Currently the communi-
cation channel is self pacing. The underlying

relayfs channel buffer will dynamically resize
upto a maximum size. If for any reason the re-
layfs buffer overflows, record sending will au-
tomatically stop, an indication is sent and the
state-agent will have to drain the channel and
request a full state dump from the kernel.

We have measured the data rate during a stan-
dard kernel build, which creates a significant
amount of task events (fork,exec,exits). For a
2-CPU system with 2 seconds sample collec-
tion we observed a data rate of 8KB/second and
a total of 190 records/sec, well within a limit
that can be processed without creating signifi-
cant overhead in the system.

5 Inbound Network

Various OS implementations offer well estab-
lished QoS infrastructure for outbound band-
width management, policy-based routing and
Diffserv [3]. Linux in particular, has an elab-
orate infrastructure for traffic control [8] that
consists of queuing disciplines(qdisc) and fil-
ters. A qdisc consists of one or more queues
and a packet scheduler. It makes traffic con-
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form to a certain profile by shaping or polic-
ing. A hierarchy of qdiscs can be constructed
jointly with a class hierarchy to make dif-
ferent traffic classes governed by proper traf-
fic profiles. Traffic can be attributed to dif-
ferent classes by the filters that match the
packet header fields. The filter matching can
be stopped to police traffic above a certain
rate limit. A wide range of qdiscs ranging
from a simple FIFO to classful CBQ or HTB
are provided for outbound bandwidth manage-
ment, while only one ingress qdisc is provided
for inbound traffic filtering and policing. The
traffic control mechanims can be used invari-
ous places where bandwidth is the primary re-
source to control.

Due to the above features, Linux is widely used
for routers, gateways, edge servers; in other
words, in situtations where network bandwidth
is the primary resource to differentiate among
classes. When it comes to endservers network-
ing, QoS has not received as much attention
since QoS is primarily governed by the systems
resources such as memory, CPU and I/O and
less by network bandwidth. When we consider
end-to-end service quality, we should require
networking QoS in the end servers as exempli-
fied in the fair share admission control mecha-
nism proposed in this section.

We present a simple change to the existing
TCP accept mechanism to provide differenti-
ated service across priority classes. Recent
work in this area has introduced the concept of
prioritized accept queues [6] and accept queue
schedulers using adaptive proportional shares
to self-managed web [14]. In a typical TCP
connection, the client initiates a request to con-
nect to a server. This connection request is
queued in a global accept queue belonging to
the socket associated with the server’s port.
The server process picks up the next queued
connection request and services it. In effect,
the incoming connections to a particular TCP

socket are serialized and handled in FIFO or-
der. When the incoming connection request
load is higher than the level that can be han-
dled by the server requests have to wait in the
accept queue until the next can be picked up.

We replace the existing single accept queue per
socket with multiple accept queues, one for
each priority class. Incoming traffic is mapped
into one of the priority classes and queued on
the accept queue for that priority. The accept
queue implements a weighted fair scheduler
such that the rate of acceptance from a partic-
ular accept queue is proportional to the weight
of the queue. In the first version of the priority
accept queue design initially proposed by the
CKRM project [13], starvation of certain pri-
ority classes was a possibility as the accepting
process picked up connection requests in the
order of descending priority.

The efficacy of the proportional accept queue
mechanism is demonstrated by an experiment.
We used Netfilter [12] to MARK options to
characterize traffic into two priority classes
with respective weights of 3:1. The server pro-
cess utilises a configurable number of threads
to service the requests. The results are shown
in Figure 3. When the load is low and there
are service threads available no differentiation
takes place and all requests are processed as
they arrive. Under higher load, requests are
queued in the accept queue with class 1 receiv-
ing a proportionally higher service rate than
class 2. The expriment was repeated, main-
taining a constant inbound connection request
rate. The proportions of the two classes were
then switched to see the service rate for the two
classes reverse as seen in Figure 4

6 Resource Control Filesystem

In the Linux kernel development community,
filesystems have become very popular as user
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Figure 3: Proportional Accept Queue: Results
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Figure 4: Proportional Accept Queue: Results under change

interfaces to kernel functionality, going well
beyond the traditional use for disk-based per-
sistent storage. The Linux kernel’s objecto-
riented Virtual File System (VFS) makes it
easy to implement a custom filesystem. Com-
mon file operations like open, close, read and
write map naturally to initalization, shutdown,
kernel-to-user and user-to-kernel communica-
tion. For CKRM, the tree structured names-

pace of a filesystem offers the additional bene-
fit of an intuitive representation of the class hi-
erarchy. Hence CKRM uses the Resource Con-
trol Filesystem (RCFS) as its user interface.

The first-level directories in RCFS contain the
roots of subtrees associated with classtypes
build or loaded into the kernel (socket_
class and taskclass currently) and the clas-
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sification engine (ce). Within the classtype
subtrees, directories represent classes. Users
can create new classes by creating a direc-
tory as long as they have the proper access
rights. Within the task_class directory,
each directory represents a task class./rcfs/
taskclass , the root of thetask_class
classtype, represents the default taskclass
which is always present when CKRM is en-
abled in the kernel. Eachtask_class direc-
tory contains a set of virtual files that are cre-
ated automatically when the directory is cre-
ated. Each virtual file has a specific function as
follows:

1. members: Reading it gives the names of
the tasks in the taskclass.

2. config: To get/set any configuration pa-
rameters specific to the taskclass.

3. target: Writing a task’s pid to this file
causes the task to be moved to the
taskclass, overriding any automatic clas-
sification that may have been done by a
classification engine.

4. shares: Writing to this file sets new lower
and upper bounds of the resource shares
for the taskclass for each resource con-
troller. Reading the file returns the current
shares. The controller name is specified
on a write which makes it possible to set
the values for controllers independent of
each other.

5. stats: Reading the file returns the statis-
tics maintained for the taskclass by each
resource controller in the system. Writing
to the file (specifying the controller) resets
the stats for that controller.

The socket_class directory is somewhat
similar. Directories under/rcfs/socket_
class/ represent listen classes and have the

same magic files as task_classes. Whereas
task_classes use the pid to identify the class
member, socket_classes, which group listening
sockets, use ip address + port name to iden-
tify their members. Within each listen class,
there are automatically created directories, one
for each accept queue class. The accept queue
directories, numbered 1 through 7, have their
own shares and stats virtual files similar to
those fortask_classes .

The /rcfs/ce directory is the user interface
to the optional classification engine. It contains
the following virtual files and directory:

1. reclassify: writing a pid or ipadress+port
to the file causes the corresponding task or
listen socket to be put back under the con-
trol of the classification engine. On sub-
sequent significant kernel events, the ce
will attempt to reclassify the task/socket
to a new taskclass/socketclass if the
task/sockets attributes have changed.

2. state: to set/get the state (active or inac-
tive) of the classification engine. To allow
a new policy to be loaded atomically, CE’s
can be set to inactive before loading a set
of rules and activated thereafter.

3. Rules: The directory allows privileged
users to create files with each file repre-
senting one rule. Reading the files, per-
mitted for all, gives the classiication pol-
icy which is currently active. The ordering
of rules in a policy is determined either
by creation time of the corresponding file
or by an explicitly specified order number
within the file. The rule files contain rule
terms consisting of attribute-value pairs
and a target class. E.g., the rulegid=10,
cmd = bash, target = /rcfs/taskclass/Ain-
dicates that tasks with gid 10 and running
the bash program (shell) should get reclas-
sified to task_class A.
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7 Example uses

In this section we will describe a number of
uses for CKRM, ranging from the traditional
large server workload consolidation, to a uni-
versity shell server, to the desktop—a novel use
of workload management systems, made possi-
ble through the resource class filesystem.

7.1 Workload Consolidation

The classical use of a workload management
system is workload consolidation, whether it’s
multiple departmental database servers on one
large server, or one small server balancing re-
sources between apache, ftpd, postfix and the
interactive users. In either scenario the main
objective is to make sure that none of the
workloads can, through excessive resource use,
cause the machine to become unusable for any
of the others.

The simple solution is to start each of the ser-
vices up in their own resource class and guar-
anteeing a certain amount of resources (say,
10% of the CPU and 20% of memory) for
each of the services. Simultaneously the ser-
vices can also have resource limits (say, 50%
of memory). This combination of guarantees
and limits gives the system a certain amount
of freedom to balance the actual amount of re-
sources each workload gets, while still putting
effective guarantees and limits in place.

7.2 Shell Server

A shell server at a university faces a number of
challenges. For example, the staff and postdocs
should be protected from the load the students
put on the machine and the students should
be protected from each other. Similarly, batch
jobs will usually have larger resource use lim-
its (e.g. max cpu time used, max memory al-
located), but a lower resource priority, as com-
pared to any of the interactive programs. These

problems can be solved by starting each class
of process in the right process class.

On the other hand, if a staff member sends
email to a student, the resources used by
the student’s mail filter should be accounted
against that student’s limits. This problem can-
not be solved by having programs start out in a
certain resource class, since the MTA process
needs to transition between resource classes
automatically. This can be solved by setting up
a classification engine to automatically trans-
fer a process to theemail resource class when
it execs/usr/sbin/sendmail . Similarly,
when /usr/bin/procmail is being ex-
eced with a certain UID, the classification en-
gine can move the process to the resource class
where that user’s interactive processes would
normally run.

7.3 Desktop

With the right file and directory ownerships in
the resource class filesystem, CKRM can be
used in an area where traditional resource man-
agement systems tend to be cumbersome: on
the desktop. A typical desktop configuration
would have as its main goals that the system
remains responsive to the user, no matter the
background load, and would look something
like the following.

The X server would get a good resource guar-
antee, e.g. 20% of CPU time and 20% of RAM.
This makes sure that no matter what other pro-
cesses run on the system, X can run smoothly
and react to the console user with acceptably
low latency.

At login time a PAM module would make sure
that the rest of the user’s processes get a good
resource guarantee, too. An acceptable guar-
antee would be 50% of CPU time and 50%
of RAM. This leaves enough resources free so
that other things in the system can run (e.g. dis-



Linux Symposium 2004 • Volume Two • 523

tro updates, updatedb, mail delivery), yet keeps
most of the system dedicated to the user. The
resource class created for the console user, e.g.
/rcfs/taskclass/console , is set up to
be writable for the console user. This way the
user’s processes can set resource guarantees
and limits to certain classes of applications.

The user’s GUI menu would take care of this
subdividing of the resources guaranteed to the
user. For example, the web browser could
be restricted to 40% of RAM, so as to not
put much pressure on the user’s other pro-
cesses. Multimedia processes could get part of
the user’s resource guarantees, e.g. 30% of the
CPU and 10% of RAM guaranteed for the mul-
timedia applications. This way the playback of
multimedia should remain smooth, regardless
of what the user’s web browser and office suite
are doing.

No superuser privileges are needed to config-
ure these resource classes, or to move the user’s
processes between them. Any GUI framework
or individual application will be able to de-
termine the resources allocated to it, leading
to more flexibility than possible with resource
management systems that can only be config-
ured by the super user. Note that since the
user cannot raise the resource limits or guar-
anteed allocated to his main class, there should
be no security risks involved with letting the
user processes manipulate their own resource
guarantees and limits.

8 Conclusion and Future Work

The consolidation of increasingly dynamic
workloads on large server platforms has con-
siderably increased the complexity of systems
management. To address this, goal-oriented
workload managers are being proposed which
seek to automate low-level system adminis-
tration requiring human intervention only for

defining high level policies that reflect business
goals.

In an earlier paper [13], we had argued that
goal-oriented WLMs require support from the
operating system kernel for class-based dif-
ferentiated service where a class is a dy-
namic policy-driven grouping of OS processes.
We had introduced a framework, called class-
based kernel resource management, for classi-
fying tasks and incoming network packets into
classes, monitoring their usage of physical re-
sources and controlling the allocation of these
resources by the kernel schedulers based on the
shares assigned to each class.

In this paper, we have described more details
of the evolving design. In particular, CKRM
has become more generic and supports groups
of any kernel object involved in resource man-
agement, not just tasks. It has a new filesystem-
based user API. Finally, the design introduces
hierarchies into classes which permits greater
flexibility for resource managers but also in-
troduces challenges for CKRM controllers. A
working prototype which includes an inbound
network controller has been developed and
made available through [15].

Future work in the project will involve rede-
veloping controllers for CPU, memory and I/O
that are not only class-aware but can handle hi-
erarchies of classes while keeping overheads
low. Another important direction is the interac-
tions of the resource schedulers and the impact
of these interactions on the shares specified.
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