
CKRM:

Class-based Prioritized Resource
Control in Linux

Hubertus Franke, Shailabh Nagar, Jonghyuk Choi,
Mike Kravetz, Chandra Seetharaman, Vivek Kashyap,

Nivedita Singhvi, Scott Kaplan
Haoquiang Zheng, Jiantao Kong

IBM T.J. Watson Research Center
IBM Linux Techonology Center

Amherst College

Outline

● Motivation
● Framework
● Classification
● CPU
● Memory
● I/O
● Network
● Conclusions

Linux Kernel Resource Management

● Process centric
– nice value for cpu
– rss limits for memory
– Flexible outbound network QoS

● Performance isolation mechanisms are weak
● New “fairshare” proposals still process/user

centric
● fairshare cpu scheduler (RvR)
● Complete Fair Queueing I/O (Jens Axboe/AA)

Server Requirements

● “Work” (users, transaction, appl, ..) has varying
levels of importance unknown to the kernel

● Different “work” is colocated in a single system
● Need ability to classify work by importance
● Need ability to differentiate service provided

– QoS is typically based on end-user goals
● Transaction latency, bandwidth, response time

– Resource share needs to be specified external to kernel
● Monitor resource consumption by “work”

What is
Class-based Kernel Resource Management ?

● Attempt to make Linux kernel meet said server requirements
better

● Driving Principles for CKRM
– Flexible, dynamic grouping of processes into classes
– Resource shares for each class
– Kernel enforcement of shares for each phys resource

● Requires scheduler (cpu,mem,i/o,net) modifications
– Grouping rules and shares specified externally through a

system wide policy

Target Scenario 1:
Enterprise Server Configuration

Webservers AppServer Transaction Server

● Class determined by
● who, how, what

● Different expected QoS
for each class:
● Response time, bandwidth

utilization

Clients

A B

● Example Stock trading:
• Gold: high volume trader

 initiating a transaction
• Silver: all other stock trading
• Bronze: mutual fund transactions

 quotes

Target Scenario 2: Virtual Hosting
● Virtual Hosting using UML, apps run as processes

under host system together with guest OS
● Every system resource needs to be regulated
● Service guarantees for each UML instance

UML Linux

Apps

UML Linux

Apps

UML Linux

Apps

Linux Host Operating System
CPU Mem Network I/O

Target Scenario 3:
Desktop

● More control over performance isolation of
activities:
– Compile code while (emailing , listening to music ..)
– Scheduled Backup disk / Virus check while working
– Limitations for ftp / telnet sessions

Why kernel changes ?

● From user space certain QoS can not be done
– Some limits do not exist (e.g. I/O bandwidth)
– Some hard to specify for dynamic workloads

● Kernel is central agent for resource control
– Natural place to do “this kind of stuff”
– Thesis: this can be done with modest changes to code

and performance of existing resource schedulers

CKRM : Key Concepts
● Class

– Policy-defined grouping of tasks/mm's doing work at a
common importance level e.g.

● All web requests from customer X
● All work initiated by user Y

– Tasks can dynamically change classes
● Share

– Portion of a resource that a class can use
– Dynamically specified by entity external to OS

● Direct specification by sys-admin/user
● Indirectly through a root-level userland control program

Classification
● Classification rule

– { [(attr,value)]+ -> class }
– Attrs of task: uid, gid, executable, application tag

● Policy
– classes + classification rules

● Application tags
– Additional flexibility for grouping based on application

specific criteria
● Classification takes place

– fork(), exec(), setuid(), setgid(), explicit call

CKRM Framework

Classification Control Monitoring

Classification
Engine

Policy
(classes/rules) Share Usage

(per resource)

Class A

T2 T3 T4

B

C

fork()
exec() T3

Share Usage
(per resource)

Class D

 T2
Resource Schedulers

CPU, Disk I/O, Network, Memory

Class-aware
resource
allocation

Monitoring
events

do_timer()
end_request()

...

User

Kernel CKRM API

Resource
Request

System
Administrator

Resource Management
Middleware

loaded

Physical resources controlled

● CPU: timer ticks
● Memory: #physical pages used
● I/O: #bytes transferred per disk

– Separate share for each disk visible to OS
● Inbound network: #connections accepted

Monitoring

● Assess utilization
– Capacity planning

● Accurate billing
– Benefit independent of ability to regulate usage

● Feedback for control settings
● Operates at different time scales

– Cumulative since policy load
– Since last invocation of “get data”

● Currently no monitoring API exposed

Outline

● Motivation
● Framework
● Classification

● CPU Control in CKRM
● Memory
● I/O
● Network
● Conclusions

Linux 2.5 Scheduler
● Ordered by process priority

● Operations (enqueue, dequeue,
get_next_task) are O(1)

● Priority and interactiveness are
determined by nice value and
sleep_average

● time_slice is determined by nice value,
task will expired after time_slice ticks
consumed

● Interactive jobs will not expire if they
don't starve other processes

● Switch active and expired queue when
all tasks expired

Task

Per CPU Run Queue

Sleep_average

Interactive

Prio

Time_slice

Nice

Expired

Active

Class Fair Share Scheduler

Class
Ticks

Run queue

Share

Top_prio

● Each class has its own runqueue

● Minimal changes to the existing scheduler:
● same runqueue structure
● same way to calculate time_slice,

sleep_average and prio, etc.
● same O(1) behavior within class

● get_next_task() now makes 2 decision
● First selects the next class to run
● Then, within that class select the

top priority task just as today

● Class Selection:

➢ Based on accumulative normalized time per class
• ecp(C) = Σ ticks(C)/share(C)
• monotonic increasing function

➢ Select class C with min(ecp(C))

➢ Consider finite sliding window CWIN [min..min+WS]
➢ min=min(ecp(C)); WS ~ 128,256

➢ When a class is reactivated (task is rescheduled)
•if (min <= ecp(C) < min+WS)
then insert C at WIN[ecp(C)]
else insert C at WIN[min].

➢ Provides fairness (shares) only

● Urgency (Interactivity)
➢ ecp(C) = (Σticks(C)/share(C)) * scale + top_prio
➢ High priority in class gives a short term boost

● Scheduler maintains O(1) characteristics

Throughput Measurement

● 4 classes, with share of (60,30,9,1)
respectively

● Each class has 5*3=15 cpu bound jobs
with nice value of (-20, -10, 0, 10, 19)
respectively

● Fair Sharing among classes: The CPU time
received by the classes are propotional to
its share (60:30:9:1) during the 30 minutes
run.

● Fair to processes within a class: CPU time
is propotional to its time_slice
(200:151:102:54:10)

● Behavior exactly as desired

– Same as O(1) within a class

– Observing shares

Interactiveness Measurement

● Exprimental Setting

– 4 classes, with share of (60,30,9,1) respectively

– Run cpu bound jobs on gold,blonze and best effort class

– Run one interactive job in silver class (30%).
● The interactive job will run for N ms;
● then sleep for 200ms.
● N varies from 50 to 500ms.

Interactiveness Measurement (cont.)

Using CFS the cpu usage of the interactive job is roughly 30%
Class Fair Scheduler receive much smooth service because of performance isolation

Scheduling Overhead
● Measured using Lmbench

– lat_ctx -s 0 $N, N=(2..256)

● Scalability: the overhead of Class Fair
Scheduler increases at about the same
pace as Linux 2.5 Scheduler

● The static overhead (class – linux)
varies from 0.14us to 0.63us during
the measurement

● Since class selection is O(1), i.e.
Independent of #classes, there are no
scalability concerns with #classes

● Code optimization might further
reduce the static overhead

SMP / Load Balancing
● Achieve global shares per class
● Maintain fairness within class (nice ratios)
● Tasks in same class/nice need similar progress
● Balancing runqueue length insufficient
● Solution: pressure based balancing
● We DO NOT try to attempt to achieve class shares on each cpu
● Progress: ticks/EPOCH
● Estimated progress of class on cpu

– EP(C,cpu) = Σ ts * ia(ts) (maintained)

– P(C,cpu) = EP (C,cpu) / cpu_usage(C,cpu)
– cpu_usage(C,cpu) maintained by MovAvg
– Ensure that P(C,cpu-i) = P(C,cpu-j)

A B C A B C

20 80 0

Goal: 30 60 10

30 50 20
CPU-0 CPU-1

possible

SMP and Load Balancing

● Simulation Result

– (8 CPU, 300 CPU bound jobs)

– Similar test setting as throughput test

– Propotional sharing among classes
maintained (60:30:9:1)

– CPU time of tasks (same
class,different nice) is propotional to
time_slice

– Tasks (same class, same nice) receive
roughly the same service (diff < 4%)

Load Balance (cont.)

● Compare load balancing based on
pressure (as describe before) vs
runqueue length (used by Linux)

● Define fairness as: the max cpu
time vs the min cpu time received
by processes with the same class
and same nice value.

● The figure shows the fairness
achieved by linux vs by pressure
under different workload and
number of cpus

● Pressure is a better approach in
general. The difference can be
larger when worloads are
interactive.

Linux Min/Max ratio

Pressure Min/Max ratio

Outline

● Motivation
● Framework
● Classification
● CPU

● CKRM Memory Control
● I/O
● Network
● Conclusions

Controlling Memory

● Average number of physical pages resident per-
class
– Does not correspond to page fault rate control

● Control points
– Page allocation

● Strict control similar to per-mm rss enforcement
– Page reclamation

● Looser control only done under memory pressure

Linux 2.5 Page Reclaimation

CKRM Memory Control Design

● Share is #maximum physical pages used per class
– hard/soft, min/max variants also possible

● Only control page reclaimation
– classes can exceed shares if no memory pressure

● No distinction between over-share classes
– reclaim as many pages as needed by shrink_cache()

● Use global active/inactive lists
– maintains global LRU order
– overhead of repeated scans of under-share pages

CKRM Memory Control Implementation

Memory Control Testbed
● Testbed

– Uniproc: 2.4 GHz P4 uniprocessor, 512 MB memory
– SMP: 8-way 700MHz PIII Xeon, 3 GB main memory

● “173.applu”: SPEC CPU2000 Benchmark
– Avg working set size ~ 184 Mbytes (46 Kilopages
– Execution time (uniproc) ~ 7.85 minutes

● Microbenchmark
– Working set size, memory access pattern determined by

exponential probability distribution
– Smoother degradation with memory share reduction

Uniproc, 368M memory, “173.applu”
● Two classes, one app per class
● Two scripts run each class/app in a loop

for ~10 hrs (~20 minutes per run)
● 92 Kilopages needed, 90 available
● Memory usage for each class collected

and averaged over entire expt
● Execution time = avg. for each run

No
Control

45/45 45.5 /
44.5

46 /44 46.5 /
43.5

42

42.5

43

43.5

44

44.5

45

45.5

46
Memory Allocation under Share Control

A
v
g

.
M

e
m

 U
s
a
g

e
 [

K
il
o
p

g
]

No
Control

45 /45 45.5 /
44.5

46 /44 46.5 /
43.5

0
10
20
30
40
50
60
70
80

Execution Time under Share Control

Memory Share (Class A / Class B) [Kilopages]

E
x
e
c
u

ti
o
n

 T
im

e
 [

M
in

] Observations
● Share settings respected
● Execution time decreases by giving more

memory share
● Degradation in execution time from no

control to equal share case
➔ effect of page faulting on CPU

scheduling.

Memory control affects CPU scheduling

0 5 10 15 20 25 30 35 40 45 50 55 60
40

41

42

43

44

45

46

47

48

Memory Usage Trace without Share Control

Class A

Class B

Time [Minutes]

M
em

or
y

U
sa

ge
 [K

ilo
pa

ge
s]

● Measure memory usage over time for no control case
● Class B, starts second, gets much lower share, makes less progress due to
increased page faults

● improves after first run of Class A finishes
● “Batching” behaviour improves total execution time over equally penalized
(equal share) case

Artificial Workload, RSS of 200Mbytes

● Exponential probability distribution
● Memory access pattern
● Memory footprint

● Cumulative footprint size with increasing number of page accesses shown
above

 SMP, 372M, Microbenchmark

No-
Con-
trol

200 /
152

190 /
162

180 /
172

170 /
182

160 /
192

150 /
202

110

135

160

185

210

Avg Memory Usage

A
vg

 m
em

 u
se

d
 [

M
B

]

No-
Con-
trol

200 /
152

190 /
162

180 /
172

170 /
182

160 /
192

150 /
202

0

25

50

75

100
Normalized Progress Rate

Memory Share (Class A / Class B) [MB]N
or

m
al

iz
ed

 P
ro

gr
es

s
R

at
e

[%
]

● Two classes, one microbenchmark per class
● Class A accesses memory twice as fast as

Class B
● ~400 MB needed, 352MB available
● Memory usage and progress measured every

3 seconds, averaged over entire expt
● Progress rate normalized across classes

Observations
● Share settings respected
● Progress rate increases with more memory

share
● System default behaviour and 192/162

share settings show very similar memory
share and progress rate
● Reduced effect of memory share on

CPU scheduling on SMP

Advanced Page Reclaim Policies

● Memory share
 Memory distribution among classes
● Share max

Upper bound of memory usage under memory
pressure

● Share min
Guaranteed memory usage

● Active set size
Real usage by each class

 Measured statistically by causing soft faults
 Can be used to tradeoff under, over share

classes

● Order of choosing victim classes

First, classes above share max.
Second, classes having idle pages (Usage>AS)
Third, classes above memory share
Fourth, classes above share min

Shared Memory Control
● Pages shared by multiple classes complicate accounting
● Shared address space

– Create class hierarchy with notion of parent classes
– Group shared pages into system-defined classes, each with multiple

parents
● each parent corresponds to a regular policy-defined class

– Apportion page reclamation between system-defined class and parent
classes appropriately

● Page cache, memory mapped files, shmem
– Assign pages to (first, most recent, max share) class
– Treat pages similar to shared address space case

Outline

● Motivation
● Framework
● Classification
● CPU
● Memory

● I/O Control in CKRM
● Network
● Conclusions

Controlling I/O

● I/O bandwidth consumed by each class
– Bandwidth measured by #bytes of I/O transfers initiated

in either direction
● Per-disk shares
● Current design changes I/O scheduler (iosched)

– Regulation at layers above (filesystem and VM) or
below (device driver) also possible

– iosched changes are simpler and good enough

Cello I/O Scheduler
● Two-level disk scheduler

– Separate bandwidth from
ordering

– Work conserving
● Class-independent, coarse grain

– Bandwidth allocation
● Class-specific, fine grain

– Ordering within class
– seek-optimizing, EDF

● Good results on Solaris
– Linux implementations

unstable or in progress

Block layer

Dequeue (FCFS)

Low-level
Device Driver

Enqueue

dispatch queue

class-specific scheds

class-independent
scheduler

per-class
pending queues

Deadline I/O Scheduler
● Improves average read

response time
– Disk utilization secondary

● Separate read/write input Q's
– Requests sorted by sector

(sort) and deadline (fifo)
● Batched transfers to dispatch

queue
– reduce seek overhead

● Implementation similar to
Cello

Block layer

Dequeue

Low-level
Device Driver

reads
Enqueue

dispatch queue

writes

sort

fifo

sort

fifo

sort/merge

CFQ I/O Scheduler
● Precedence of fairness over

throughput
– Each task has equal share

● Per-task request queues
● Dequeue function implements

fairness
– Roundrobin through non-

empty queues
● Simple changes can implement

priorities for dequeuing

Block layer

sort/merge

Dequeue

Low-level
Device Driver

per-task
pending
queues

Enqueue

round-robin

dispatch queue

I/O control requirements

● Weight/priority of I/O request submitter takes
precedence over disk utilization
– Already happening in 2.5 I/O schedulers

● Anticipatory – per-task performance
● Complete Fair Queuing (CFQ) – fairness

● Associate I/O request with class of submitter, not
task/user
– Weight of request = weight of submitting class
– task/user based treatment can be done using classes

Costa I/O Scheduler
● Variant of Cello/CFQ
● Per-class input Q's

– System queue for
urgent/important requests
(VM writeout)

● Deque requests using class
weight

● Adding deadline

– sort/fifo lists for each class
● Adding anticipation

– service another request
from same task, adjust class
share

● Implementation planned

Block layer

sort/merge

Dequeue

Low-level
Device Driver

per-class
pending
queues

Enqueue

dispatch queue

Outline

● Motivation
● Framework
● Classification
● CPU
● Memory
● I/O

● CKRM Inbound Network Control
● Conclusions

Network QoS
● DiffServ support in Linux provides Internet QoS
● Traffic Control, Netfilter

Forward Traffic
Control

Upper
Layers

From
Network

To
Network

qdisc, class, filter

Demux

netfilter
hooks

• PHBs
– classifier, marker, shaper/policer, meter
– Implemented by traffic control / netfilter

• End server QoS support in Linux ?

Inbound Network Control

● Motivation
– Incoming connections initiate resource consumption
– Head-of-line blocking of high priority connections

under network load
● Persistent connections exacerbate the problem

– Application level control not enough under high load
● Prioritize acceptance of incoming connections

– Classify connections using iptables or during in-kernel
application protocol processing

– Reorder socket accept queue
–

Prioritized Accept Queues

● Classify using (local, remote) x (IP, port)
– Iptables rules defined

● Split single accept queue into prioritized queues
– low priority conn requests moved back to SYN queue if

accept queue full
– SYN policing to avoid starving low prio conns

● Shown to prioritize connections effectively
● Drawbacks

– Classification hard in presence of proxies and multiple
classes on same remote host

Proportional Share Scheduling (PSS)

● Variant of PAQ with weights instead of strict
priorities
– Connections accepted from each queue in proportion of

weight
● Only controls distribution, not amount of

available bandwidth

partial
accept
queueSYN

classifier

multi
accept
queue

connection
scheduler

PSS Experimental Results

● Class 0 : Class 1 = 7:3
● From 300 reqs/sec, acceptance follows the weight

● Httperf clients, Apache web
server

End Server Connection Control
• Head of Line Blocking

– When service time of a connection is high
(e.g. persistent connection)

– High priority connection requests may block indefinitely
• Multi Accept Queues

[Voigt01] Priority Accept Queue
http://www-124.ibm.com/pub/qos/paq_index.html

[Pradhan02] Proportional Share Accept Queue
design by IBM LTC (Nivedita, Vivek)

partial
accept
queueSYN

classifier

multi
accept
queue

connection
scheduler

Outline

● Motivation
● Framework
● Classification
● CPU
● Memory
● I/O
● Network

● Conclusions

Conclusions

● There is a need for class-based control over all
physical resources managed by the kernel

● A design and implementation exists for CPU and
Memory
– achieves major objectives
– small modifications to existing code

● I/O and inbound network in development
● Ideal candidate for a 2.7 feature

Getting involved

● Open source project at Sourceforge
– http://ckrm.sf.net/

● Birds of Feather session
– 30 minutes, same room

● Participation and feedback invited

CKRM:

Class-based Prioritized Resource
Control in Linux

Hubertus Franke, Shailabh Nagar, Jonghyuk Choi,
Mike Kravetz, Chandra Seetharaman, Vivek Kashyap,

Nivedita Singhvi, Scott Kaplan
Haoquiang Zheng, Jiantao Kong

IBM T.J. Watson Research Center
IBM Linux Techonology Center

Amherst College

