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Linux Kernel Resource Management

● Process centric   
– nice value for cpu
– rss limits for memory
– Flexible outbound network QoS

● Performance isolation mechanisms are weak
● New “fairshare” proposals still process/user 

centric 
● fairshare cpu scheduler (RvR)
● Complete Fair Queueing I/O (Jens Axboe/AA)



Server Requirements

● “Work” (users, transaction, appl, ..) has varying 
levels of importance unknown to the kernel

● Different “work” is colocated in a single system
● Need ability to classify work by importance
● Need ability to differentiate service provided

– QoS is typically based on end-user goals 
● Transaction latency, bandwidth, response time 

– Resource share needs to be specified external to kernel
● Monitor resource consumption by “work”



What is 
Class-based Kernel Resource Management ?

● Attempt to make Linux kernel meet said server requirements 
better

● Driving Principles for CKRM
– Flexible, dynamic grouping of processes into classes
– Resource shares for each class
– Kernel enforcement of shares for each phys resource

● Requires scheduler (cpu,mem,i/o,net) modifications
– Grouping rules and shares specified externally through a 

system wide policy



Target Scenario 1:
Enterprise Server Configuration

Webservers AppServer Transaction Server

● Class determined by
● who, how, what

● Different expected QoS 
for each class:
● Response time, bandwidth

utilization

Clients

A B

● Example Stock trading:
• Gold:     high volume trader

              initiating a transaction
• Silver:   all other stock trading  
• Bronze: mutual fund transactions

              quotes



Target Scenario 2: Virtual Hosting
● Virtual Hosting using UML, apps run as processes 

under host system together with guest OS
● Every system  resource needs to be regulated
● Service guarantees for each UML instance

UML Linux

Apps

UML Linux

Apps

UML Linux

Apps

Linux Host Operating System
CPU     Mem      Network    I/O 



Target Scenario 3:
Desktop

● More control over performance isolation of  
activities:
– Compile code while (emailing , listening to music ..)
– Scheduled Backup disk / Virus check while working
– Limitations for ftp / telnet sessions 



Why kernel changes ?

● From user space certain QoS can not be done
– Some limits do not exist ( e.g. I/O bandwidth )
– Some hard to specify for dynamic workloads

● Kernel is central agent for resource control
– Natural place to do “this kind of stuff”
– Thesis: this can be done with modest changes to code 

and performance of existing resource schedulers



CKRM :  Key Concepts
● Class

– Policy-defined grouping of tasks/mm's doing work at a 
common importance level e.g.

● All web requests from customer X 
● All work initiated by user Y 

– Tasks can dynamically change classes
● Share

– Portion of a resource that a class can use
– Dynamically specified by entity external to OS

● Direct specification by sys-admin/user
● Indirectly through a root-level userland control program 



Classification
● Classification rule

– {    [  (attr,value)  ]+    ->   class }
– Attrs of task: uid, gid, executable, application tag

● Policy
– classes + classification rules

● Application tags
– Additional flexibility for grouping based on application 

specific criteria
● Classification takes place

– fork(), exec(), setuid(), setgid(), explicit call



CKRM Framework

Classification              Control            Monitoring

Classification
Engine

Policy 
(classes/rules) Share           Usage

(per  resource)

Class A

T2        T3        T4

B

C

fork()
exec() T3

Share           Usage
(per  resource)

Class D

                         T2     
Resource Schedulers

CPU, Disk I/O, Network, Memory

Class-aware
resource
allocation

Monitoring
events

do_timer()
end_request()

...

User

Kernel CKRM API

Resource
Request

System
Administrator

Resource Management
Middleware

loaded



Physical resources controlled

● CPU: timer ticks
● Memory: #physical pages used 
● I/O: #bytes transferred per disk 

– Separate share for each disk visible to OS
● Inbound network: #connections accepted



Monitoring

● Assess utilization
– Capacity planning

● Accurate billing
– Benefit independent of ability to regulate usage

● Feedback for control settings
● Operates at different time scales

– Cumulative since policy load
– Since last invocation of  “get data”

● Currently no monitoring API exposed
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Linux 2.5 Scheduler
● Ordered by process priority

● Operations (enqueue, dequeue, 
get_next_task) are O(1)

● Priority and interactiveness are 
determined by nice value and 
sleep_average

● time_slice is determined by nice value, 
task will expired after time_slice ticks 
consumed

● Interactive jobs will not expire if they 
don't starve other processes

● Switch active and expired queue when 
all tasks expired

Task

Per CPU Run Queue

Sleep_average

Interactive

Prio

Time_slice

Nice

Expired

Active



Class Fair Share Scheduler

Class 
Ticks

Run queue

Share

Top_prio

● Each class has its own runqueue

● Minimal changes to the existing scheduler: 
● same runqueue structure
● same way to calculate time_slice, 

sleep_average and prio, etc.
● same O(1) behavior within class

● get_next_task() now makes 2 decision
● First selects the next class to run
● Then, within that class select the 

top priority task just as today

● Class Selection:

➢ Based on accumulative normalized time per class
• ecp(C)  = Σ ticks(C)/share(C) 
• monotonic increasing function

➢ Select class C with min(ecp(C))

➢ Consider finite sliding window CWIN [min..min+WS]
➢ min=min(ecp(C));    WS   ~ 128,256

➢ When a class is reactivated (task is rescheduled)
•if  (min <= ecp(C) < min+WS)
then    insert C   at   WIN[ecp(C)]
else    insert C   at   WIN[min].

➢ Provides fairness (shares) only

● Urgency (Interactivity)
➢ ecp(C)  = (Σticks(C)/share(C)) * scale   + top_prio
➢ High priority in class gives a short term boost

● Scheduler maintains O(1) characteristics



Throughput Measurement

● 4 classes, with share of (60,30,9,1) 
respectively

● Each class has 5*3=15 cpu bound jobs 
with nice value of (-20, -10, 0, 10, 19) 
respectively

● Fair Sharing among classes: The CPU time 
received by the classes are propotional to 
its share (60:30:9:1) during the 30 minutes 
run.

● Fair to processes within a class: CPU time 
is propotional to its time_slice 
(200:151:102:54:10)

● Behavior exactly as desired

– Same as O(1) within a class

– Observing shares



Interactiveness Measurement

● Exprimental Setting

– 4 classes, with share of (60,30,9,1) respectively

– Run cpu bound jobs on gold,blonze and best effort class

– Run one interactive job in silver class (30%). 
● The interactive job will run for N ms;
● then sleep for 200ms. 
● N varies from 50 to 500ms.



Interactiveness Measurement (cont.)

Using CFS the cpu usage of the interactive job is roughly 30%
Class Fair Scheduler receive much smooth service because of performance isolation



Scheduling Overhead
● Measured using Lmbench 

– lat_ctx -s 0 $N,   N=(2..256)

● Scalability: the overhead of Class Fair 
Scheduler increases at about the same 
pace as Linux 2.5 Scheduler

● The static overhead (class – linux) 
varies from 0.14us to 0.63us during 
the measurement

● Since class selection is O(1), i.e. 
Independent of #classes, there are no 
scalability concerns with #classes

● Code optimization might further 
reduce the static overhead



SMP / Load Balancing
● Achieve global shares per class
● Maintain fairness within class (nice ratios)
● Tasks in same class/nice need similar progress
● Balancing runqueue length insufficient
● Solution:   pressure based balancing
● We DO NOT try to attempt to achieve class shares on each cpu
● Progress: ticks/EPOCH
● Estimated progress of class on cpu

– EP(C,cpu) = Σ ts * ia(ts)   (maintained)

– P(C,cpu) = EP (C,cpu) / cpu_usage(C,cpu) 
– cpu_usage(C,cpu) maintained by MovAvg
– Ensure that  P(C,cpu-i) = P(C,cpu-j)

A    B    C A    B    C

20  80   0

Goal: 30  60   10

30  50   20
CPU-0 CPU-1

possible



SMP and Load Balancing

● Simulation Result 

– (8 CPU, 300 CPU bound jobs)

– Similar test setting as throughput test

– Propotional sharing among classes 
maintained (60:30:9:1)

– CPU time of tasks (same 
class,different nice) is propotional to 
time_slice

– Tasks (same class, same nice) receive 
roughly the same service  (diff < 4%)



Load Balance (cont.)

● Compare load balancing based on 
pressure (as describe before) vs 
runqueue length (used by Linux)

● Define fairness as: the max cpu 
time vs the min cpu time received 
by processes with the same class 
and same nice value.

● The figure shows the fairness 
achieved by linux vs by pressure 
under different workload and 
number of cpus

● Pressure is a better approach in 
general. The difference can be 
larger when worloads are 
interactive.

Linux   Min/Max ratio

Pressure Min/Max ratio
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Controlling Memory

● Average number of physical pages resident per-
class
– Does not correspond to page fault rate control

● Control points
– Page allocation

● Strict control similar to per-mm rss enforcement
– Page reclamation

● Looser control only done under memory pressure



Linux 2.5 Page Reclaimation



CKRM Memory Control Design

● Share is #maximum physical pages used per class
– hard/soft,  min/max variants also possible

● Only control page reclaimation
– classes can exceed shares if no memory pressure 

● No distinction between over-share classes 
– reclaim as many pages as needed by shrink_cache() 

● Use global active/inactive lists
– maintains global LRU order
– overhead of  repeated scans of under-share pages 



CKRM Memory Control Implementation



Memory Control Testbed
● Testbed

– Uniproc: 2.4 GHz P4  uniprocessor, 512 MB memory
– SMP: 8-way 700MHz PIII Xeon, 3 GB main memory

● “173.applu”: SPEC CPU2000 Benchmark
– Avg working set size ~ 184 Mbytes (46 Kilopages
– Execution time (uniproc) ~  7.85 minutes

● Microbenchmark
– Working set size, memory access pattern determined by  

exponential probability distribution
– Smoother degradation with memory share reduction



Uniproc, 368M memory, “173.applu”
● Two classes, one app per class
● Two scripts run each class/app in a loop 

for ~10 hrs (~20 minutes per run)
● 92 Kilopages needed, 90 available
● Memory usage for each class  collected 

and averaged over entire expt
● Execution time = avg. for each run
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] Observations
● Share settings respected 
● Execution time decreases by giving more 

memory share
● Degradation in execution time from no 

control to equal share case
➔ effect of page faulting  on CPU 

scheduling. 



Memory control affects CPU scheduling
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● Measure memory usage over time for no control case
● Class B, starts second, gets much lower share, makes less progress due to 
increased page faults

●  improves after first run of Class A finishes 
● “Batching” behaviour  improves total execution time over equally penalized 
(equal share) case 



Artificial Workload, RSS of 200Mbytes

●  Exponential probability distribution 
● Memory access pattern 
● Memory footprint

● Cumulative footprint size with increasing number of page accesses shown 
above 



 SMP, 372M, Microbenchmark
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● Two classes, one microbenchmark per class
● Class A accesses memory twice as fast as 

Class B
● ~400 MB needed, 352MB available
● Memory usage and progress measured every 

3 seconds, averaged over entire expt 
● Progress rate normalized across classes

Observations
● Share settings respected 
● Progress rate increases with more memory 

share
● System default behaviour and 192/162 

share settings show very similar memory 
share and progress rate  
● Reduced effect of memory share on 

CPU scheduling on SMP



Advanced Page Reclaim Policies

● Memory share
    Memory distribution among classes
● Share max

Upper bound of memory usage under memory 
pressure

● Share min
Guaranteed memory usage

● Active set size
Real usage by each class

    Measured statistically by causing soft faults
    Can be used to tradeoff under, over share 

classes
    
●  Order of choosing victim classes

First, classes above share max.
Second, classes having idle pages (Usage>AS)
Third, classes above memory share
Fourth, classes above share min



Shared Memory Control
● Pages shared by multiple classes complicate accounting
● Shared address space  

– Create class hierarchy with notion of parent classes
– Group shared pages into system-defined classes, each  with multiple 

parents
● each parent corresponds to a regular policy-defined class

– Apportion page reclamation between system-defined class and parent 
classes appropriately 

● Page cache, memory mapped files, shmem
– Assign pages to (first, most recent, max share) class
– Treat pages similar to shared address space case
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Controlling I/O

● I/O bandwidth consumed by each class
– Bandwidth measured by #bytes of I/O transfers initiated 

in either direction
● Per-disk shares
● Current design changes I/O scheduler (iosched)

– Regulation at layers above (filesystem and VM) or 
below (device driver) also possible 

– iosched changes are simpler and good enough



Cello I/O Scheduler
● Two-level disk scheduler

– Separate bandwidth from 
ordering 

– Work conserving
● Class-independent, coarse grain

– Bandwidth allocation
● Class-specific, fine grain

– Ordering within class
– seek-optimizing, EDF

● Good results on Solaris
– Linux implementations 

unstable or in progress

Block layer

Dequeue (FCFS)

Low-level
Device Driver

Enqueue

dispatch queue

class-specific scheds

class-independent 
scheduler

per-class
pending  queues



Deadline I/O Scheduler
● Improves average read 

response time
– Disk utilization secondary

● Separate read/write input Q's
– Requests sorted by sector 

(sort) and deadline (fifo)
● Batched transfers to dispatch 

queue 
– reduce seek overhead

● Implementation similar to 
Cello 

Block layer

Dequeue 

Low-level
Device Driver

reads
Enqueue

dispatch queue

writes

sort

fifo

sort

fifo

sort/merge



CFQ I/O Scheduler
● Precedence of fairness over 

throughput
– Each task has equal share

● Per-task request queues
● Dequeue function implements 

fairness
– Roundrobin through non-

empty queues
● Simple changes can implement 

priorities for dequeuing 

Block layer

sort/merge

Dequeue

Low-level
Device Driver

per-task
pending
queues

Enqueue

round-robin

dispatch queue



I/O control requirements

● Weight/priority of I/O request submitter takes 
precedence over disk utilization
– Already happening in 2.5 I/O schedulers 

● Anticipatory –  per-task performance
● Complete Fair Queuing (CFQ) –  fairness

● Associate I/O request with class of submitter, not 
task/user
– Weight of request = weight of submitting class
– task/user based treatment can be done using classes 



Costa I/O Scheduler
● Variant of Cello/CFQ
● Per-class input Q's

– System queue for 
urgent/important requests 
(VM writeout)

● Deque requests using class 
weight

● Adding deadline

– sort/fifo lists for each class
● Adding anticipation

– service another request 
from same task, adjust class 
share 

● Implementation planned

Block layer

sort/merge

Dequeue 

Low-level
Device Driver

per-class
pending
queues

Enqueue

dispatch queue



Outline

● Motivation
● Framework
● Classification 
● CPU
● Memory
● I/O

● CKRM Inbound Network Control
● Conclusions 



Network QoS
● DiffServ support in Linux provides Internet QoS
● Traffic Control, Netfilter

Forward Traffic
Control

Upper
Layers

From
Network

To
Network

qdisc, class, filter

Demux

netfilter
hooks 

• PHBs
– classifier, marker, shaper/policer, meter
– Implemented by traffic control / netfilter

• End server QoS support in Linux ?



Inbound Network Control

● Motivation
– Incoming connections initiate resource consumption
– Head-of-line blocking of high priority connections 

under network load
● Persistent connections exacerbate the problem

– Application level control not enough under high load
● Prioritize acceptance of incoming  connections

– Classify connections using iptables or during in-kernel 
application protocol processing

– Reorder socket accept queue
–



Prioritized Accept Queues

● Classify using (local, remote) x (IP, port)
– Iptables rules defined

● Split single accept queue into prioritized queues
– low priority conn requests moved back to SYN queue if 

accept queue full
– SYN policing to avoid starving low prio conns

● Shown to prioritize connections effectively
● Drawbacks

– Classification hard in presence of proxies and multiple 
classes on same remote host



Proportional Share Scheduling (PSS)

● Variant of PAQ with weights instead of strict 
priorities
– Connections accepted from each queue in proportion of 

weight
● Only controls distribution, not amount of 

available bandwidth

partial
accept
queueSYN

classifier

multi
accept
queue

connection
scheduler



PSS Experimental Results 

● Class 0 : Class 1  = 7:3
● From 300 reqs/sec, acceptance follows the weight

● Httperf clients, Apache web 
server



End Server Connection Control
• Head of Line Blocking

– When service time of a connection is high
(e.g. persistent connection)

– High priority connection requests may block indefinitely
• Multi Accept Queues

[Voigt01] Priority Accept Queue
http://www-124.ibm.com/pub/qos/paq_index.html

[Pradhan02] Proportional Share Accept Queue
design by IBM LTC (Nivedita, Vivek)

partial
accept
queueSYN

classifier

multi
accept
queue

connection
scheduler
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Conclusions

● There is a need for class-based control over all 
physical resources managed by the kernel

● A design and implementation exists for CPU and 
Memory  
– achieves major objectives
– small modifications to existing code

● I/O and inbound network in development
● Ideal candidate for a 2.7 feature



Getting involved 

● Open source project at Sourceforge
– http://ckrm.sf.net/

● Birds of Feather session
– 30 minutes, same room

● Participation and feedback invited
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