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Abstract

Workload management in enterprise operating systems is being increasingly
driven  by  two requirements.  On the  one hand,  workloads with diverse  and
dynamically  changing  resource  demands  are  being  consolidated  on  larger
symmetric multiprocessors requiring efficient, business goal oriented workload
management. On the other hand, autonomic computing initiatives are seeking
to reduce the complexity and manual involvement in systems management.
We argue that  the  goal-oriented  workload  managers  that  can satisfy  these
conflicting  objectives  require  the  operating  system kernel  to  provide  class-
based differentiated service for all the resources that it manages. We discuss
an extensible framework for class-based kernel resource management (CKRM)
that  provides  policy-driven  classification  and  differentiated  service  of  CPU,
memory,  I/O  and  network  bandwidth.  The  paper  describes  the  design  and
implementation  of  the  framework  in  the  Linux  2.6  kernel.  It  also  presents
preliminary performance evaluation results that  demonstrate the viability of
the approach.

Introduction

Workload management  is  an  increasingly  important  requirement  of  modern
enterprise computing systems. There are two trends driving the development
of enterprise workload management middleware. One is the consolidation of
multiple  workloads  onto  large  symmetric  multiprocessors  (SMPs)  and
mainframes. Their  diverse and dynamic resource demands require workload
managers (WLMs) to provide efficient differentiated service at finer time scales
to maintain high utilization of expensive hardware.  The second trend is the
move towards specification of workload performance in terms of the business
importance of the workload rather than in terms of low-level system resource
usage. This has led to the increasing use of goal-oriented workload managers
which are more tightly integrated into the business processes of an enterprise.

Traditional  workload  managers  [1,2]  have  been  built  with  two  layers.  The
lower, OS specific layer deals with modifying and monitoring operating system
parameters. The upper layer(s) provide a largely OS independent API, generally
through a graphical user interface, allowing a multi-tier or clustered system to
be managed through a unified API despite containing heterogenous operating
systems. Such WLMs are able to manage heterogeneity but do little to address
complexity. The burden of translating business goals into workload resource
requirements and the latter into OS specific tuning parameters remains on the
human  system  administrator.  Increasing  workload  consolidation  only  adds



more complexity to an already onerous problem.

The  autonomic  computing  initiatives  recently  announced  by  several  server
vendors are starting to address the complexity problem through goal-oriented
workload managers [3,4] which allow a system to be more self-managed. Such
WLMs allow the human system administrator to specify high level performance
objectives in  the form of policies, closely aligned with the business importance
of the workload.  The WLM middleware then uses adaptive feedback control
over OS tuning parameters to realize the given objectives. 

In mainstream operating systems the control of key resources such as memory,
CPU time, disk I/O bandwidth and network bandwidth is typically strongly tied
to  processes,  tasks  and  address  spaces  and  are  highly  tuned  to  maximize
system utilization.  This  introduces  additional  complexity  to  the  WLM  which
needs  to  translate  the  QoS  requirements  into  these  low  level  per  task
requirements, tough typically QoS is enforced at work class level.  Hence, in
order to isolate the autonomic goal oriented layers of the system management
from the intricacies of the operating system we introduce the class concept
into the  operating system kernel and require the OS to provide  differentiated
service for all major resources at a class granularity defined by the WLM.

In  this  paper,  we  discuss  a  framework  called  class-based  kernel  resource
management (CKRM) that implements this support under Linux.  In CKRM, a
class  is  defined  as  a  dynamic  grouping  of  OS  objects  of  a  particular  type
(classtype) and defined through policies provided by the WLM. Each class has
an associated share of each of its resources. For instance, CKRM tasks classes
provides resource management for four principal physical resources managed
by  the  kernel  namely  CPU  time,  physical  memory  pages,  disk  I/O  and
bandwidth.  Sockets  classes  provide  inbound  network  bandwidth  resource
control. The Linux resource schedulers are modified to provide differentiated
service  at  a  class  granularity  based on the  assigned shares.  The WLM can
dynamically modify the composition of a class and its share in order to meet
higher level business goals. We evaluate the performance of the CKRM using
simple benchmarks that demonstrate the efficacy of its approach.

This work makes several contributions that distinguish it from previous related
work such as resource containers [5] and cluster reserves [6]. First, it describes
the design of a flexible kernel framework for class-based management that can
be used to manage both physical  and virtual  resources (such as number of
open  files).  The  framework  allows  the  various  resource  schedulers  and
classification engine to be developed and deployed independent of each other.
Second,  it  shows  how  incremental  modifications  to  existing  Linux  resource
schedulers can make them provide differentiated service effectively at a class
granularity.  To  our  knowledge,  this  is  the  first  open-source  resource
management  package  that  attempts  to  provide  control  over  all  the  major
physical  resources  i.e.  CPU,  memory,  I/O  and  network.  Third,  it  provides  a
policy-driven classification engine that eases the development of new higher
level WLMs and enables better coordination between multiple WLMs through
policy exchange. Finally, it develops a tagging mechanism that allows server
applications to participate in their resource management in conjunction with
the WLM.



Overview

A  typical  WLM  defines  a  workload  to  be  any  system  work  with  a  distinct
business goal. From a Linux operating system's viewpoint, a workload is a set of
kernel tasks executing over some duration. Some of these tasks are dedicated
to this workload. Other tasks, running server applications such as database or
web servers, perform work for multiple workloads. Such tasks can be viewed as
executing in phases with each phase dedicated to one workload. Server tasks
can explicitly inform the WLM of its phase by setting an application tag. A WLM
can also infer the phase by monitoring significant system events such as forks,
execs, setuid etc. and classifying the server task as best as possible.

In this scenario, a WLM
translates  a  high  level
business  goal  of  a
workload (say response
time) into system goals
for  the  set  of  tasks
executing  the  work-
load. The system goals
are  a  set  of  delays
seen  by  the  workload
in waiting for individual
resources such as CPU
ticks,  memory  pages
etc. The WLM monitors
the  business  goals,
possibly  using  applica-
tion assistance, and the
system  usage  of  its

resources.  If  the  business  goal  is  not  being  met,  it  identifies  the  system
resource(s) which form a performance bottleneck for the workload and adjusts
the workload's share of the resource appropriately. 

The CKRM framework enables a WLM to regulate workloads through a number
of components, as shown in Figure 1:

Core : The core defines the basic entities used by CKRM and serves as the link
between all the other components. A class is a group of kernel objects with an
associated set of contraints for resource controllers operating on those kernel
objects e.g. a class could consist of a group of tasks which have a joint share of
cpu time and resident page frames. Each class has an associated  classtype
which identifies the kernel object being grouped. CKRM currently defines two
classtypes called  task_class and  socket_class for grouping tasks and sockets.
For brevity, the term taskclass and socketclass will be used to denote a class of
classytpe task_class and socket_class respectively. Classtypes can be enabled
selectively and independent of each other. A user not interested in network
regulation  could  choose  to  disable  socket_classes.  Classes  in  CKRM  are
hierarchical.  Children  classes  can  be  defined  to  subdivide  the  resources
allocated to the parent. 

Classification  engine  (CE):  This  optional  components  assists  in  the
association of kernel objects to classes of its associated classtype. Each kernel
object managed by CKRM is always associated with some class. If no classes

Figure 1: CKRM Framework and Lifecycle



are defined by the user, all objects belong to the default class for the classtype.
At  significant  kernel  events  such  as  fork,  exec,  setuid,  listen,  when  the
attributes of a kernel object are changed, the Core queries the CE, if one is
present, to get the class into which the object should be placed. CE's are free
to  use  any  logic  to  return  the  classification.  CKRM  provides  a  rule-based
classification engine (RBCE) which allows privileged users to define rules which
use attribute matching to return the class. RBCE is expected to meet the needs
of most users though they can define their own CE's or choose not to have any
and rely upon manual classification of each kernel object through CKRM's rcfs
user interface (described later).

Resource  Controllers/Managers:  Each  classtype  has  a  set  of  associated
resource  controllers,  typically  one  for  each  resource  associated  with  the
classtype e.g. taskclasses have cpu, memory and I/O controllers to regulate the
cpu ticks,  resident page frames and per-disk I/O bandwidth consumed by it
while socketclasses have an accept queue controller to regulate the number of
TCP connections accepted by member sockets. Resource requests by a kernel
object in a class are regulated by the corresponding resource controller, if one
exists and is enabled. The resource controllers are deployed independent of
each other so a user interested only in controlling CPU time for taskclasses
could  choose  to  disable  the  memory  and  I/O  controllers  (as  well  as  the
socketclass classtype and all its resource controllers).

Resource  Control  File  System  (RCFS):  It  forms  the  main  user-kernel
interface  for  CKRM.  Once  RCFS  is  mounted,  it  provides  a  hierarchy  of
directories and files which can be manipulated using well-known file operations
such as open, close, read, write, mkdir, rmdir and unlink. Directories of rcfs
correspond to classes. User-kernel communication of commands and responses
is  done through reads/writes to virtual  files  in the directories.  Writes to the
virtual files trigger CKRM Core functions and responses are available through
reads of the same virtual file. 

The CKRM architecture outlined above achieves three major objectives:

• Efficient, class-based differentiation of resource allocation and monitoring for
dynamic  workloads  :  Regulate  and  monitor  kernel  resource  allocation  by
classes which are defined by the privileged user and not only in terms of
tasks. The differentiation should work in the face of relatively rapid changes
in  class  membership  and  over  roughly  the  same time intervals  at  which
process-centric regulation currently works. 

• Low  overhead  for  non-users:  Users  disinterested  in  CKRM's  functionality
should see minimum overhead  even if CKRM  support is compiled into the
kernel.  Signs  of  user  disinterest  include  omitting  to  mount  rcfs  or  not
defining  any  classes.   Even  for  users,  CKRM  tries  to  keep  overheads
proportional to the features used.

• Flexibility  and  extensibility  through  minimization  of  cross-component
dependencies:  Classification engines  should  be  independent  of  classtypes
and optional, classtypes should be independent of each other and so should
resource controllers, even within the same classtype. This goal is achieved
through  object-oriented  interfaces  between  components.  Minimizing
dependencies  allows  kernel  developers  to  selectively  include components
based  on their  perception of  its  utility,  performance and stability.  It  also
permits alternative versions of the components to be used depending on the



target environment e.g. embedded Linux distributions could have a different
set  of  taskclass  resource  controllers  (or  even  classtypes)  than  server-
oriented distributions.

Classification Engine

The Classification Engine (CE) is an optional component that enables CKRM to
automatically classify kernel objects within the context of its classtype. Since
the CE is optional and since we want to main flexibility in its implementation,
functionality and deployment, it is supplied as a dynamically loadable module.
The CE interacts with CKRM core as follows. The CKRM core defines a set of
ckrm events that constitute a point during execution where a kernel  object
could potentially change its class. A classtype can register a callback at any of
these events. As an example, the task class hooks the fork, exec, exit, setuid,
setgid calls  where as the socket  class hooks the listen and accept  calls.  In
these callbacks the classtypes typically invoke the optional CE to obtain a new
class. If no CE is registered or the CE does not determine a class, the object
remains in its current class, otherwise the object is moved to the new class and
the corresponding resource managers of that class's type are informed about
the switch. 

For  every  classtype  the  CE wants  to provide  automatic  classification  for,  it
registers a classification callback with the classtype and the set of events to
which the callback is limited to. The task of CE is then to provide a target class
for the kernel objects passed in the context of the classtype. For instance, task
classes pass only the task, while socket classes pass the socket kernel object
as  well  as  the  task  object.  Though the  implementation of  the  classification
engine  is  completely  independent  of  CKRM,  the  CKRM  project  provides  a
default classification, called RBCE, that is based on classification rules. Rules
consist  of  a set of rule  terms and a target  class.  A rule  term specifies  one
particular kernel object attribute, a comparision operator (=,<,>,!) and a value
expression. To speed up the classification process we maintain state with tasks
about which rules and rule terms have been examined for a particular task and
only reexamine those terms that are indicated by the event. 

RBCE provides rules based on task parameters ((pid, gid, uid, executable) and
socket information (IP info). The rules in conjunction with the defined classes
constitute a site policy for workload managment and is dynamically changable
(See user interface section) into the RBCE. Hence, this approach ensures the
separation of policy and enforcement.

To facilitate the interaction with WLMs to provide event monitoring and tracing,
the CE can also register a notification callback with any classtype, that is called
when a kernel object is assigned to a new class. Similar so the classification
callback, the notification callback can be limited to a set of ckrm events. This
facility is utilized in the Resource Monitoring section described below.



Resource Scheduling

Providing differentiated service to resources such as CPU time, page frames or
resident  set  size  (RSS),   disk  I/O  bandwdith  and  number  of  accepted  TCP
connections  in  the  Linux  kernel  is  the  primary  design  objective  of  CKRM.
However, the CKRM project also has a design objective to provide class-based
differentiation  through  small  extensions/modifications  to  the  existing  task-
centric  schedulers  in  the  kernel.  This  not  only  facilitates  the  integration  of
CKRM into the mainline Linux kernel, but also permits it to continue to take
advantage of the advances in the underlying schedulers provided by the Linux
kernel development community.

The following sections describe the CKRM's resource controllers developed for
an  earlier  version  of  CKRM.  In  the  earlier  version,  classes  did  not  form  a
hierarchy (all classes in the system were peers of each other) and there was a
single notion of resource share (compared to the upper and lower bounds in
the  current  version).  As  such,  all  the  resource  controllers  are  now  being
redeveloped. However, since large parts of the design are expected to remain
the  same  and  the  controllers  showed  promising  results,  it  is  instructive  to
describe the resource controllers. 

CPU Controller

The CPU scheduler decides which task to run when and for how long. The Linux
cpu scheduler in 2.6, a.k.a the O(1) scheduler, is a multi-queue scheduler that
assigns a scheduler instance and an associated runqueue to each cpu. The per-
cpu runqueue consists  of  two arrays of  task  lists,  the  active array and the
expired array.  Each array index represents  a list  of  runnable  tasks at  their
respective  priority  level.  Linux  distinguishes  140  priority  levels,  100  for
realtime tasks and 40 for timeshared tasks to map the -20..19 task nice levels.
The maximum time slice a regular task executes is a linear mapped function of
its priority into [10..200]  msecs. After executing its timeslice,  a task moves
from the active list to the expired list to guarantee that all tasks get a chance
to execute.  When the active  array is  empty,  expired and active arrays are
swapped.  A  task  is  defined  as  interactive,  if  its  recent  average  sleep  time
exceeds  a  threshold.  Interactive  tasks  remain  in  the  active  queue.  Every
250msecs  and  on  idle  processing  the  runqueues  are  rebalanced  based  on
runqueue length to ensure that a similar level of progress is made on each cpu.

In the class fair-share queueing extension (CFQ) we assign per-cpu runqueues
for each class. A hierachical scheduling scheme is utilized, that selects classes
for execution based on their consumed cycles and selects tasks within their
classes' local runqueue based on the existing O(1) scheduling semantics. This
makes performance isolation possible since tasks belonging to different classes
are now maintained in different run queues. At every scheduling decision we
first select the next class to run locally and within that class the best task to
run using the existing task selection algorithm. We contain the code changes to
the  get_next_task()functionality.  Local class objects  (runqueue) maintain a
local effective class priority as 

ecp(C) = R *  ∑ cycles(C)/share(C) + top_prio 



where cycles(C) represents the amount of CPU time received by class C, R is
a configurable proportionment value and  top_prio (negative values present
higher priorities) represents the highest priority of the tasks within class C on a
particular  cpu.  For  class  selection,  the  class  with  min(ecp(C)) is  chosen.
Similar to the per-class task runqueues, we maintain on each cpu a runqueue
of local runnable classes based on their ecp(C) of classes with tasks to run on
this cpu. This class runqueue is maintained as a sliding window, since ecp(C) is
a monotonically increasing function. When a class is reactivated, i.e. a task in
this class is reactivated and it is the only task locally for that class, its ecp(C) is
forced into the sliding window to ensure that dormant classes will catch up only
on its recently unused share and not on all its share since going dormant.

By  combining  both  the  progress
(cycles(C)/share(C))  and  the
urgency  (top_prio)  together,  our
class fair scheduler achieves accurate
proportional sharing while preserving
good interactive  job support.  This  is
illustrated  in  Figure  2 for  the  uni-
processor  case.  Here  4  classes
(gold,silver,bronze,best  effort)  with
shares of  60,30,9,1  are  defined and
each  populated  with  15  cpu  bound
jobs  (3  for  for  each  nice  value  of
(-20,-10,0,10,19)).  First,  over  a  30
minute  run,  each  class  obtained  its
assigned share. Within each class the

relative fairness is also maintained in that cycles obtained per nice level is in
proportion to its priority and tasks within the same nice level obtain the same
cylces. 

Figure  3 provides  QoS  for  an
interactive  task,  where  the  silver
class  is  populated  with  a  single
interactive  job  that  sleeps  for  200
msec and then executes  for a finite
amount  of  time  (50-500msecs).  The
default  cycles  received under the O
(1) linux scheduler varies significantly
and degrades when the job becomes
more  cpu-bound,  while  the  CFQ
extension  ensures  that  the  cycles
received  are  close  to  the  desired
share of 30%. 

Figure  4 presents  the  wait  time  of  a  said  interactive  task  and  shows  a
significantly smoother and more gracefully degrading wait functions.

Figure 2: Uni-processor throughput QoS

Figure 3: Uni-Processor Interactive QoS
Share Maintainence



Finally,  the  CFQ  extension  scale  at
the same pace as the O(1) scheduler
introducing  a  fixed  overhead  of
aprox.  .4  microseconds  on  average
where the two task case consumes 2
microseconds per context-switch and
the  256  task  case  consumes  5.5
microseconds.

So  far  we  have  demonstrated  the
efficacy of CFQ on the uni-processor
case. In the multi-processor case we
perform  load-balancing  based  on  a
the  concept  of  class  pressure.  The
epoch  time  of  a  set  of  tasks  is
defined  as  the  time  required  to

execute each task for it designated time slice. We then approximate the epoch
time of each class on each cpu by 

EP(C,cpu) = ∑ ts(t) * ia(t)
where ts(t) is the priority based time slice of a task and ia(t) is a measure
of its interactive level  (0..1).  The class pressure on a particular cpu is  then
defined as 

P(C,cpu) = EP(C,cpu) / cpu_usage(C,cpu)
with  cpu_usage(C,cpu) dentifying  the  actual  recently  consumed  cycles  by
class  C  on  said  cpu.  Load  balancing  is  then  performed  by  balancing  the
pressures of classes across different cpus. It is noteworthy that we do not try to
attempt to give each class its share on every cpu.

For a sufficiently loaded system, we observed that the overall class shares are
still  maintained, and the QoS that tasks receive within a group same class,
same nice level) are still reasonable close (< 5%).

Memory Controller

Differentiated usage of physical memory has traditionally received very little
attention in operating systems resource management research. Waldspurger
[7] describes a method of proportionally sharing of physical memory between
virtual machines created by VMWare's ESX Server.  While  some of the ideas
described there such as the taxation of unused shares can be applied in our
context,  it  addresses  a  fundamentally  different  problem of  sharing memory
across  multiple  OS  kernels.  In  [8],  a  cooperative  mechanism  is  described,
where kernel hints allow applications to regulate their memory consumption. 

One  of  the  major  contributions  of  CKRM  is  providing  simple  and  effective
control over the resident set size (RSS) of a class. We first describe the existing
mechanism for controlling physical memory in Linux 2.6.

A process' RSS, the number of physical page frames allocated to a process, is
critical in ensuring the progress of the corresponding application. An RSS which
is significantly lower than its average working set size can cause a process to
spend  much  of  its  time  in  page  faults  which  also  affects  overall  system

Figure 4: Uni-processor Interactive QoS
Response Time



performance due to the pressure on the I/O subsystem. Most VMMs, including
Linux,  regulate  memory usage  only  at  system-wide  granularity.  Per-process
RSS limits are available but are rarely used due to the difficulty in estimating
working set sizes.

The default 2.6 Linux VMM controls system memory usage primarily through
page reclamation. The physical memory of a system is divided into three zones
-  DMA  (<  16  MB),  Normal  (16-896MB)  and  High  (>  896  MB).  The  page
descriptors for page frames belonging to each zone are kept in three lists -
active, inactive and free. Recently accessed pages are kept in the active list
while older pages which are candidates for reclamation are kept in the inactive
list. The free list stores page frames ready for allocation. When system memory
falls  below  a  threshold,  the  kernel's  page  swapper  scans  the  inactive  list
looking for page frames to reclaim. Clean pages containing unmodified data are
directly reclaimed into the free list after unmapping them from the appropriate
address spaces. Modified pages are scheduled for writeback to their backing
store (either a filesystem file or the swap file) and added to the free list after
the writeback completes. 

When CKRM memory control is enabled, each class has an associated share
denoting the fraction of available physical memory to which it is entitled. The
CKRM memory controller follows two design principles to control the average
physical memory consumed by a class with minimal impact on overall system
performance. First, it only enforces class shares when overall system memory
is  low.  The  threshold  for  share  enforcement  is  the  same as  that  for  page
reclamation in a default  system. This  ensures the overhead of  unnecessary
regulation and provides  some insulation of  system performance from share
settings that do not reflect the average working set size of a class. Second,
CKRM only enforces shares by modifying the page reclamation mechanism and
does not alter page frame allocation. This allows a smooth and gradual control
over average page frame usage.

Figure  5 shows  the  logical
representation of page reclamation in
CKRM. Each page frame descriptor in
the system is now associated with a
class. Statistics are maintained on the
number of page frames allocated to a
class.  Consequently,  at  any  given
time, each class is either below, at or
above its share of physical memory.
The  page  frames  of  a  zone  are
logically divided into per-class active,
inactive  and  free  lists.   When  free
memory is  low,  the  VMM chooses  a
zone  (as  before)  and  then  uses  an
arbitrator function to choose a victim
class  within  the  zone from amongst
the  over-share  classes.  The  inactive

pages of the victim class are evaluated to select victim page frames using the
same criteria as used in the default VMM. Victim pages are reclaimed either
directly or following a writeback as before.  If system memory is still below the
threshold,  the next victim class is  chosen until  sufficient  page frames have

Figure 5: Class Aware Page Reclaimation



been  reclaimed.  The  statistics  on  per-class  usage  are  updated  for  use  by
CKRM's monitoring facilities and the arbitrator.

The implementation of the above design does not use physically separate per-
class lists of pages so that pages can continue to be arranged in order of their
age. Instead, the same per-zone active, inactive and free lists are used with
modifications to the scanning functions to make them consider the class of a
page before its age, state etc. first. Pages belonging to under-share classes are
skipped during a scan. Doing a logical rather than physical separation of per-
class page lists preserves the benefits of selecting victim pages in system-wide
LRU order even amongst the over-share classes.

The CKRM memory controller was evaluated on a 2.4GHz Pentium 4 desktop
running Redhat Linux 9 and the 2.5.69 Linux kernel  running using a simple
microbenchmark which allocates a variable number of pages and proceeds to
access them using a user-specified access pattern. Two classes, A and B, were
created,  each  running  one  instance  of  the  microbenchmark.  Each
microbenchmark was configured to consume 200MB of memory but Class A's
access frequency was set at twice that of Class B to cause some variance in
application progress. Against a total demand of 400 MB, the available system
memory was limited to 352 MB to ensure that regulation would be performed. 

Figure  6 shows the actual  memory
usage  of  classes  (A,B)  as  their
shares were modified. The first bar
shows the memory usage under the
default  VMM (without  CKRM).  Class
A is seen to consume more memory
than  B  due  to  its  higher  access
frequency which  keeps more  of  its
pages in the active list (and hence
unreclaimable). With CKRM enabled,
as the class shares are varied from
(200M,152M) through (150M, 202M),

the usage of Class A decreases while that of B increases. As can be seen, the
usage of the classes closely tracks the share settings. During the experiments,
it took only a few seconds for the usage values to stabilize to the values shown
after a share setting had been changed.

I/O Controller

The  CKRM  I/O  controller  aims  at  providing  class-based  control  over  I/O
bandwidth of block devices, most commonly a disk. In Linux, I/O requests to a
block  device  are  typically  serviced  through  a  single  logical  queue  which  is
managed by an I/O scheduler. CKRM modifies the I/O scheduler to enforce class
I/O  bandwidth shares.  We briefly  describe  the  existing  Linux I/O  schedulers
followed by the specifics of CKRM I/O control. 

The I/O scheduler in Linux forms the interface between the generic block layer
and the low level device drivers. The block layer provides functions which are
used by filesystems and the virtual memory manager to submit I/O requests to
block  devices.  These  requests  are  transformed  by  the  I/O  scheduler,  most
commonly by merging and sorting, before being made available to the low-

Figure 6: Differentiated memory usage by
two instances of memory microbenchmark



level  device  drivers  (henceforth  only  called  device  drivers).  Device  drivers
consume  the  transformed  requests  and  forward  them,  using  device
specificprotocols, to the device controllers which perform the I/O. The mainline
Linux  2.6  kernel  provides  multiple  I/O  schedulers  such  as  anticipatory,
deadline, linus  and noop with anticipatory [9] being the default. The recently
proposed  Complete  Fair  Queuing  I/O  scheduler  [10]  provides  share-based
control  over per-disk bandwidth for each process. CKRM's I/O controller  is  a
variant of CFQ which provides per-class control.

Figure 7 shows the structure of CKRM I/O control. The
single logical I/O request queue of a block device is
physically represented by several queues: one input
queue per class and one common output or dispatch
queue.  Processes  submit  I/O  requests  through  the
Virtual File System (VFS) using either synchronous or
asynchronous I/O system calls. Each of these requests
is associated with the class of the submitting process
and gets queued into the class-specific queue of the
block device.  Each queue has an associated weight
which is proportional to its assigned share. When the
device driver is ready to service the next request, the
I/O scheduler moves requests from the class queues
to the common dispatch queue in proportion of their
weighted  size.  The  device  driver  picks  the  next
request  off  the  dispatch  queue  in  FIFO  order  and
submits it to the device.

By giving primacy to class weight while transferring
requests to the driver, CKRM runs the risk of decreasing disk utilization due to
potentially  higher  seek  overheads.  To  amortize  this  cost,  requests  are
transferred in batches from each class queue. As each batch is already sorted
in  order  of  expected  seek  time  during  the  input  phase,  seek  overhead  is
somewhat reduced. The batch size is a parameter that can be varied with 4
being the default.

Inbound Network Controller

Various  OS  implementations  offer  well  established  QoS  infrastructure  for
outbound  bandwidth  management,  policy-based  routing  and  Diffserv  [11].
Linux in particular, has an elaborate infrastructure for traffic control [12] that
consists of queuing disciplines(qdisc) and filters.   A qdisc consists of one or
more queues and a packet scheduler.  It  makes traffic conform to a certain
profile by shaping or policing. A hierarchy of qdiscs can be constructed jointly
with  a class  hierarchy to  make different  traffic  classes  governed by  proper
traffic profiles.  Traffic can be attributed to different classes by the filters that
match the packet header fields. The filter matching can be stopped to police
traffic above a certain rate limit. A wide range of qdiscs ranging from a simple
FIFO  to  classful  CBQ  or  HTB  are  provided  for  outbound  bandwidth
management,  while  only  one  ingress  qdisc  is  provided  for  inbound  traffic
filtering  and  policing.  The  traffic  control  mechanims  can  be  used  invarious
places where bandwidth is the primary resource to control.

Figure 7: CKRM I/O
Scheduler



Due to the above features, Linux is widely used for routers, gateways, edge
servers; in other words, in situtations where network bandwidth is the primary
resource to differentiate among classes.

When  it  comes  to  endservers  networking,  QoS  has  not  received  as  much
attention since QoS is primarily governed by the systems resources such as
memory, CPU and I/O and less by network bandwidth. When we consider end-
to-end service quality, we should require networking QoS in the end servers as
exemplified in the fair  share admission control  mechanism proposed in  this
section.

We present a simple change to the existing TCP accept mechanism to provide
differentiated  service  across  priority  classes.  Recent  work  in  this  area  has
introduced the  concept  of  prioritized accept  queues [13]  and accept queue
schedulers using adaptive proportional shares to self-managed web [14].

In a typical TCP connection, the client initiates a request to connect to a server.
This connection request is queued in a global accept queue belonging to the
socket associated with the server's port. The server process picks up the next
queued connection request and services it. In effect, the incoming connections
to a particular TCP socket are serialized and handled in FIFO order. When the
incoming connection request load is higher than the level that can be handled
by the server requests have to wait in the accept queue until the next can be
picked up.

We replace the existing single accept queue per socket with multiple accept
queues, one for each priority class. Incoming traffic is mapped into one of the
priority classes and queued on the accept queue for that priority. 

The accept queue implements a weighted fair scheduler such that the rate of
acceptance from a particular accept queue is proportional to the weight of the
queue.  In  the  basic  priority  accept  queue  design  proposed  earlier  in  [15],
starvation of certain priority classes was a possibility as the accepting process
picked up connection requests in the order of descending priority.

The efficacy of the proportional accept queue mechanism is demonstrated by
an experiment.  We used Netfilter[16] to  MARK options to characterize traffic
into two priority classes with  respective  weights of  3:1.  The server  process
utilises a configurable number of threads to service the requests. The results
are shown in Figure  8.  When the load is low and there are service threads
available no differentiation takes place and all requests are processed as they
arrive.  Under higher load, requests are queued in the accept queue with class
1 receiving a proportionally higher service rate than class 2. The expriment was
repeated,  maintaining  a  constant  inbound  connection  request  rate.  The
proportions of the two classes were then switched to see the service rate for
the two classes reverse as seen in Figure 9.



Resource Monitoring

We now describe the monitoring infrastructure. Strictly speaking, the per-class
monitoring components are part of CKRM while the per-process components
are not. However, we shall describe them together as they both can be utilized
by  goal-based  WLMs.  Furthermore,  they  are  bundled  with  the  classification
engine and utilize the CE's notification callback to obtain classification events.

The monitoring infrastructure illustrated in Figure 10 is based on the following
design principles:

1. Event-driven: Every significant event in the kernel that affectsthe state of a
task  is  recorded  and  reported  back  to  the  state-agent.  The  events  of
importance are aperiodic such as process fork, exit and reclassification as
well as periodic events such as sampling. Commands sent by the state-agent
are also treated as events by the kernel module.  

2. Communication  Channel:  A  single  logical  communication  channel  is
maintained between the state-agent and the kernel module and is used for
transferring all commands and data. Most of the data flow is from the kernel
to user space in the form of records resulting from events.

3. Minimal  Kernel  State:  The  design  minimizes  the  additional  per-process
state  that  needs  to  be  maintained  within  the  kernel.  Most  of  the  state
needed for high level  control purposes is kept within the state agent and
updated through the records sent by the kernel.

The state-agent, which can also be integrated within a WLM, maintains state on
each existing and exited task in the system and provides it to the WLM.  Since
the operating system does not retain the state of exited processes, the state-
agent must maintain it for future consumption by the WLM.  The state-agent
communicates  with  a  kernel  module  through  a  single  bidirectional
communication chan-nel, receiving updates to the process state in the form of
records and occasionally  sending com-mands.  Events  in  the  kernel  such as
process fork, exit,  reclassify (resulting from change in any process attribute
such as gid, pid) cause records to be generated through functions provided by

Figure 9:Proportional Accept Queue
Results under change

Figure 8: Proportional AcceptQueue
Results



the kernel module.

Server tasks can assist the WLM by
informing  it  about  the  phase  in
which  they  are  operating  (each
phase corresponds to a workload).
Such tasks  invoke  CKRM to  set  a
tag  associated  with  their
task_struct in  the  kernel.  CKRM
uses  this  event  to  reclassify  the
task and also records the event (to
be transmitted to the WLM through
the  state-agent).  Other  kernel
events that might cause a task to
be  reclassified  (such  as  the  exec
and  setuid  system  calls  etc.)  are
also noted by CKRM and passed to
the WLM through the state-agent. 

In  addition,  CKRM  performs
periodic  sampling  of  each  task's
state in the kernel to determine the
resource it is waiting on (if any), its
resource  consumption  so  far  and
the class to which it  belongs. The
sample  information  is  transmitted
to  the  state-agent.  The  WLM  can
correlate  the information with the

tag setting to statistically determine the resource consumption and delays of
both server and dedicated processes executing a workload.

Sampling is done through a kernel module function that is invoked by a self-
restarting kernel timer. Commands sent by the state-agent cause appropriate
functions in the kernel module to execute and also return data in the form of
records. The kernel components are kept simple and only minimal additional
state has to be maintained in the kernel. In particular, the kernel does not have
to maintain extra state about exited processes which introduces problems with
PID  reusage,  memory  management  to  name  a  few.  Instead,  relevant  task
information is replicated in user space, is by definition received in the correct
time order (see below) and can be kept around until the WLM has consumed
the information. Furthermore, the semantics of a reclassification in the kernel,
which  identifies  a  new  phase  in  a  server  process,  does  not  have  to  be
introduced into the kernel space. 

The following small changes are required to the linux kernel to track system
delays.  The  struct  delay_info is  added  to  the  task_struct.  Delay_info
contains 32-bit variables to store cpu delay, cpu using, io delay and memory io
delay. The counters provide micro second accuracy. The current cpu scheduler
records timestamps whenever a task i) becomes runnable and is entered into a
runqueue and ii) when a context switch occurs from one task to another. We
use  these  same timestamps  to  get  per-task  cpu  wait  and cpu  using  times
recorded  respectively.  I/O  delays  are  measured  by  the  difference  of
timestamps taken when a task blocks waiting for I/O to complete and when it
returns.  All  I/O is normally attributed to the blocking task. Pagefault delays,

Figure 10: Monitoring and Control Approach



however, are treated as special I/O delays. On entrance to and exit from the
page fault handler the task is marked or unmarked as being in a memory path
using flags in task_struct. If during the I/O delay, this flag is set, the I/O delay
is  counted as a memory delay instead of as a pure I/O delay.  The per-task
delay information is accessible through the file /proc/<pid>/delay. Similarly,
each class contains a delay_info structure.

In contrast to the precise accounting of delays, sampling examines the state of
tasks at fixed interval. In particular, we sample at fixed intervals (≈1sec) the
entire  set  of  tasks in the system and increment per task counters that are
integrated into the task private structure attached by the classification engine
that builds the core of the kernel module. We increment counters if a task is
running, waiting to run, performing I/O or handles a pagefault I/O. 

Task data (sampled and/or precise) is requested by and sent to the state-agent
in coarser intervals.  We can send data in continuous aggregate mode or in
delta mode, i.e.  only if task data has changed do we send a new data record
and then reset the local counters.

The task transition events are sent at the time they occur. We distinguish the
fork, exit and reclassification events as records. At each reclassification (which
could potentially be the end of a phase) we transmit the sample and delay data
and reset them locally.

As a  communication channel we utilize the linux relayfs pseudo filesystem, a
highly efficient mechanism to share data between kernel and user space.  The
user accesses the shared buffers, called channels,  as files,  while the kernel
writes to them using buffer reservations and memory read/write operations.
The content and structure of the buffer is determined by the kernel and user
client.  Currently  the  communication  channel  is  self  pacing.  The  underlying
relayfs channel buffer will dynamically resize upto a maximum size. If for any
reason the relayfs buffer overflows, record sending will automatically stop, an
indication  is  sent  and  the  state-agent  will  have  to  drain  the  channel  and
request a full state dump from the kernel.

We have measured the data rate during a standard kernel build, which creates
a significant amount of task events (fork,exec,exits). For a 2-CPU system with 2
seconds sample collection we observed a data rate of 8KB/second and a total
of 190 records/sec, well within a limit that can be processed without creating
significant overhead in the system.

User Interface

In  the Linux kernel  development community,  filesystems have become very
popular  as  user  interfaces  to  kernel  functionality,  going  well  beyond  the
traditional  use  for  disk-based  persistent  storage.  The  Linux  kernel's  object-
oriented  Virtual  File  System  (VFS)  makes  it  easy  to  implement  a  custom
filesystem.  Common  file  operations  like  open,  close,  read  and  write  map
naturally  to  initalization,  shutdown,  kernel-to-user  and  user-to-kernel
communication.  For  CKRM,  the  tree  structured  namespace  of  a  filesystem
offers  the  additional  benefit  of  an  intuitive  representation  of  the  class
hierarchy. Hence CKRM uses the Resource Control Filesystem (RCFS) as its user
interface. 



The first-level directories in RCFS contain the roots of subtrees associated with
classtypes  build  or  loaded  into  the  kernel  (socket_class  and  task_class
currently)  and the  classification  engine  (ce).  Within  the  classtype  subtrees,
directories  represent  classes.  Users  can  create  new  classes  by  creating  a
directory as long as they have the proper access rights.

Within  the  task_class  directory,  each  directory  represents  a  taskclass.  /
rcfs/task_class,  the  root  of  the  task_class  classtype,  represents  the  default
taskclass which is always present when CKRM is enabled in the kernel. Each
task_class directory contains a set of virtual files that are created automatically
when  the  directory  is  created.  Each  virtual  file  has  a  specific  function  as
follows:

1. members: Reading it gives the names of the tasks in the taskclass.

2. config: To get/set any configuration parameters specific to the taskclass.

3. target: Writing a task's pid to this file causes the task to be moved to the
taskclass,  overriding  any  automatic  classification  that  may  have  been
done by a classification engine. 

4. shares:  Writing  to  this  file  sets  new  lower  and  upper  bounds  of  the
resource shares for the taskclass for each resource controller. Reading the
file returns the current shares. The controller name is specified on a write
which makes it possible to set the values for controllers independent of
each other.

5. stats: Reading the file returns the statistics maintained  for the taskclass
by each resource controller in the system. Writing to the file (specifying
the controller) resets the stats for that controller.

The  socket_class  directory  is  somewhat  similar.  Directories  under  /
rcfs/socket_class/  represent listen classes and have the same magic files as
task_classes.  Whereas task_classes use the pid to identify the class member,
socket_classes, which group listening sockets, use  ip address + port name to
identify  their  members.  Within  each  listen  class,  there  are  automatically
created  directories,  one  for  each  accept  queue  class.  The  accept  queue
directories, numbered 1 through 7, have their own shares and stats virtual files
similar to those for task_classes.

The /rcfs/ce directory is the user interface to the optional classification engine.
It contains the following virtual files and directory:

1. reclassify:  writing  a  pid  or  ipadress+port  to  the  file  causes  the
corresponding task or listen socket to be put back under the control of the
classification engine. On subsequent significant kernel events, the ce will
attempt to reclassify the task/socket to a new taskclass/socketclass if the
task/sockets attributes have changed. 

2. state: to set/get the state (active or inactive) of the classification engine.
To allow a new policy to be loaded atomically, CE's can be set to inactive
before loading a set of rules and activated thereafter.

3. Rules: The directory allows privileged users to create files with each file
representing  one  rule.  Reading  the  files,  permitted  for  all,  gives  the
classiication policy  which is  currently active.  The ordering of rules in a
policy is determined either by creation time of the corresponding file or by
an explicitly specified order number within the file. The rule files contain



rule terms consisting of attribute-value pairs and a target class. e.g. The
rule

gid=10, cmd = bash, target = /rcfs/task_class/A
indicates that tasks with gid=10 and running the bash program (shell) should
get reclassified to task_class A.

Future work

The consolidation of increasingly dynamic workloads on large server platforms
has  considerably  increased  the  complexity  of  systems  management.  To
address this, goal-oriented workload managers are being proposed which seek
to automate low-level system administration requiring human intervention only
for defining high level policies that reflect business goals.

In  this  paper,  we  argue  that  goal-oriented  WLMs  require  support  from the
operating system kernel for class-based differentiated service where a class is
a dynamic policy-driven grouping of OS processes. We introduce a framework,
called  class-based  kernel  resource  management,  for  classifying  tasks  and
incoming  network  packets  into  classes,  monitoring  their  usage  of  physical
resources  and  controlling  the  allocation  of  these  resources  by  the  kernel
schedulers based on the shares assigned to each class. For each of four major
physical resources (CPU, disk, network and memory), we provide the design of
a  proportional  share  scheduler  using  incremental  modifications  to  the
corresponding existing schedulers. The framework is implemented in the Linux
2.6  kernel  and  is  publicly  available  at  http://ckrm.sf.net.  The  performance
evaluation of the schedulers and the flexibility of the framework demonstrate
that CKRM is a viable approach for building autonomic operating systems.

With the basic framework in place, there are several directions for future work.
We intend to explore the use of CKRM to manage virtual resources such as
limits on open files, processes,  logins, locks etc. These are also traditionally
managed at a per-process or per-user granularity but are candidates for class-
based management.  The individual  schedulers need to be refined.  The CPU
scheduler's  load balancing  design  will  be  revisited.  The  memory controllers
treatment of shared memory pages can be significantly improved. We are also
examining alternate designs for memory controller that use explicit per-class
page lists.

Perhaps the most important direction for future work is the interactions of the
resource  schedulers  and  the  impact  of  these  interactions  on  the  shares
specified. CPU, memory, I/O and network share settings are interdependent in
OS specific ways. Exporting these interdependencies in the form of constraints
on share specifications might considerably increase the efficacy of feedback
control loops in the workload manager.
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