
Advanced Workload Management Support for Linux

Hubertus Franke, Shailabh Nagar, Chandra Seetharaman, Vivek Kashyap
Rik van Riel

{frankeh, nagar, sekharan, kashyapv}@us.ibm.com , riel@redhat.com

IBM Corp., Red Hat, Inc.

Abstract

Workload management in enterprise operating systems is being increasingly
driven by two requirements. On the one hand, workloads with diverse and
dynamically changing resource demands are being consolidated on larger
symmetric multiprocessors requiring efficient, business goal oriented workload
management. On the other hand, autonomic computing initiatives are seeking
to reduce the complexity and manual involvement in systems management.
We argue that the goal-oriented workload managers that can satisfy these
conflicting objectives require the operating system kernel to provide class-
based differentiated service for all the resources that it manages. We discuss
an extensible framework for class-based kernel resource management (CKRM)
that provides policy-driven classification and differentiated service of CPU,
memory, I/O and network bandwidth. The paper describes the design and
implementation of the framework in the Linux 2.6 kernel. It also presents
preliminary performance evaluation results that demonstrate the viability of
the approach.

Introduction

Workload management is an increasingly important requirement of modern
enterprise computing systems. There are two trends driving the development
of enterprise workload management middleware. One is the consolidation of
multiple workloads onto large symmetric multiprocessors (SMPs) and
mainframes. Their diverse and dynamic resource demands require workload
managers (WLMs) to provide efficient differentiated service at finer time scales
to maintain high utilization of expensive hardware. The second trend is the
move towards specification of workload performance in terms of the business
importance of the workload rather than in terms of low-level system resource
usage. This has led to the increasing use of goal-oriented workload managers
which are more tightly integrated into the business processes of an enterprise.

Traditional workload managers [1,2] have been built with two layers. The
lower, OS specific layer deals with modifying and monitoring operating system
parameters. The upper layer(s) provide a largely OS independent API, generally
through a graphical user interface, allowing a multi-tier or clustered system to
be managed through a unified API despite containing heterogenous operating
systems. Such WLMs are able to manage heterogeneity but do little to address
complexity. The burden of translating business goals into workload resource
requirements and the latter into OS specific tuning parameters remains on the
human system administrator. Increasing workload consolidation only adds

more complexity to an already onerous problem.

The autonomic computing initiatives recently announced by several server
vendors are starting to address the complexity problem through goal-oriented
workload managers [3,4] which allow a system to be more self-managed. Such
WLMs allow the human system administrator to specify high level performance
objectives in the form of policies, closely aligned with the business importance
of the workload. The WLM middleware then uses adaptive feedback control
over OS tuning parameters to realize the given objectives.

In mainstream operating systems the control of key resources such as memory,
CPU time, disk I/O bandwidth and network bandwidth is typically strongly tied
to processes, tasks and address spaces and are highly tuned to maximize
system utilization. This introduces additional complexity to the WLM which
needs to translate the QoS requirements into these low level per task
requirements, tough typically QoS is enforced at work class level. Hence, in
order to isolate the autonomic goal oriented layers of the system management
from the intricacies of the operating system we introduce the class concept
into the operating system kernel and require the OS to provide differentiated
service for all major resources at a class granularity defined by the WLM.

In this paper, we discuss a framework called class-based kernel resource
management (CKRM) that implements this support under Linux. In CKRM, a
class is defined as a dynamic grouping of OS objects of a particular type
(classtype) and defined through policies provided by the WLM. Each class has
an associated share of each of its resources. For instance, CKRM tasks classes
provides resource management for four principal physical resources managed
by the kernel namely CPU time, physical memory pages, disk I/O and
bandwidth. Sockets classes provide inbound network bandwidth resource
control. The Linux resource schedulers are modified to provide differentiated
service at a class granularity based on the assigned shares. The WLM can
dynamically modify the composition of a class and its share in order to meet
higher level business goals. We evaluate the performance of the CKRM using
simple benchmarks that demonstrate the efficacy of its approach.

This work makes several contributions that distinguish it from previous related
work such as resource containers [5] and cluster reserves [6]. First, it describes
the design of a flexible kernel framework for class-based management that can
be used to manage both physical and virtual resources (such as number of
open files). The framework allows the various resource schedulers and
classification engine to be developed and deployed independent of each other.
Second, it shows how incremental modifications to existing Linux resource
schedulers can make them provide differentiated service effectively at a class
granularity. To our knowledge, this is the first open-source resource
management package that attempts to provide control over all the major
physical resources i.e. CPU, memory, I/O and network. Third, it provides a
policy-driven classification engine that eases the development of new higher
level WLMs and enables better coordination between multiple WLMs through
policy exchange. Finally, it develops a tagging mechanism that allows server
applications to participate in their resource management in conjunction with
the WLM.

Overview

A typical WLM defines a workload to be any system work with a distinct
business goal. From a Linux operating system's viewpoint, a workload is a set of
kernel tasks executing over some duration. Some of these tasks are dedicated
to this workload. Other tasks, running server applications such as database or
web servers, perform work for multiple workloads. Such tasks can be viewed as
executing in phases with each phase dedicated to one workload. Server tasks
can explicitly inform the WLM of its phase by setting an application tag. A WLM
can also infer the phase by monitoring significant system events such as forks,
execs, setuid etc. and classifying the server task as best as possible.

In this scenario, a WLM
translates a high level
business goal of a
workload (say response
time) into system goals
for the set of tasks
executing the work-
load. The system goals
are a set of delays
seen by the workload
in waiting for individual
resources such as CPU
ticks, memory pages
etc. The WLM monitors
the business goals,
possibly using applica-
tion assistance, and the
system usage of its

resources. If the business goal is not being met, it identifies the system
resource(s) which form a performance bottleneck for the workload and adjusts
the workload's share of the resource appropriately.

The CKRM framework enables a WLM to regulate workloads through a number
of components, as shown in Figure 1:

Core : The core defines the basic entities used by CKRM and serves as the link
between all the other components. A class is a group of kernel objects with an
associated set of contraints for resource controllers operating on those kernel
objects e.g. a class could consist of a group of tasks which have a joint share of
cpu time and resident page frames. Each class has an associated classtype
which identifies the kernel object being grouped. CKRM currently defines two
classtypes called task_class and socket_class for grouping tasks and sockets.
For brevity, the term taskclass and socketclass will be used to denote a class of
classytpe task_class and socket_class respectively. Classtypes can be enabled
selectively and independent of each other. A user not interested in network
regulation could choose to disable socket_classes. Classes in CKRM are
hierarchical. Children classes can be defined to subdivide the resources
allocated to the parent.

Classification engine (CE): This optional components assists in the
association of kernel objects to classes of its associated classtype. Each kernel
object managed by CKRM is always associated with some class. If no classes

Figure 1: CKRM Framework and Lifecycle

are defined by the user, all objects belong to the default class for the classtype.
At significant kernel events such as fork, exec, setuid, listen, when the
attributes of a kernel object are changed, the Core queries the CE, if one is
present, to get the class into which the object should be placed. CE's are free
to use any logic to return the classification. CKRM provides a rule-based
classification engine (RBCE) which allows privileged users to define rules which
use attribute matching to return the class. RBCE is expected to meet the needs
of most users though they can define their own CE's or choose not to have any
and rely upon manual classification of each kernel object through CKRM's rcfs
user interface (described later).

Resource Controllers/Managers: Each classtype has a set of associated
resource controllers, typically one for each resource associated with the
classtype e.g. taskclasses have cpu, memory and I/O controllers to regulate the
cpu ticks, resident page frames and per-disk I/O bandwidth consumed by it
while socketclasses have an accept queue controller to regulate the number of
TCP connections accepted by member sockets. Resource requests by a kernel
object in a class are regulated by the corresponding resource controller, if one
exists and is enabled. The resource controllers are deployed independent of
each other so a user interested only in controlling CPU time for taskclasses
could choose to disable the memory and I/O controllers (as well as the
socketclass classtype and all its resource controllers).

Resource Control File System (RCFS): It forms the main user-kernel
interface for CKRM. Once RCFS is mounted, it provides a hierarchy of
directories and files which can be manipulated using well-known file operations
such as open, close, read, write, mkdir, rmdir and unlink. Directories of rcfs
correspond to classes. User-kernel communication of commands and responses
is done through reads/writes to virtual files in the directories. Writes to the
virtual files trigger CKRM Core functions and responses are available through
reads of the same virtual file.

The CKRM architecture outlined above achieves three major objectives:

• Efficient, class-based differentiation of resource allocation and monitoring for
dynamic workloads : Regulate and monitor kernel resource allocation by
classes which are defined by the privileged user and not only in terms of
tasks. The differentiation should work in the face of relatively rapid changes
in class membership and over roughly the same time intervals at which
process-centric regulation currently works.

• Low overhead for non-users: Users disinterested in CKRM's functionality
should see minimum overhead even if CKRM support is compiled into the
kernel. Signs of user disinterest include omitting to mount rcfs or not
defining any classes. Even for users, CKRM tries to keep overheads
proportional to the features used.

• Flexibility and extensibility through minimization of cross-component
dependencies: Classification engines should be independent of classtypes
and optional, classtypes should be independent of each other and so should
resource controllers, even within the same classtype. This goal is achieved
through object-oriented interfaces between components. Minimizing
dependencies allows kernel developers to selectively include components
based on their perception of its utility, performance and stability. It also
permits alternative versions of the components to be used depending on the

target environment e.g. embedded Linux distributions could have a different
set of taskclass resource controllers (or even classtypes) than server-
oriented distributions.

Classification Engine

The Classification Engine (CE) is an optional component that enables CKRM to
automatically classify kernel objects within the context of its classtype. Since
the CE is optional and since we want to main flexibility in its implementation,
functionality and deployment, it is supplied as a dynamically loadable module.
The CE interacts with CKRM core as follows. The CKRM core defines a set of
ckrm events that constitute a point during execution where a kernel object
could potentially change its class. A classtype can register a callback at any of
these events. As an example, the task class hooks the fork, exec, exit, setuid,
setgid calls where as the socket class hooks the listen and accept calls. In
these callbacks the classtypes typically invoke the optional CE to obtain a new
class. If no CE is registered or the CE does not determine a class, the object
remains in its current class, otherwise the object is moved to the new class and
the corresponding resource managers of that class's type are informed about
the switch.

For every classtype the CE wants to provide automatic classification for, it
registers a classification callback with the classtype and the set of events to
which the callback is limited to. The task of CE is then to provide a target class
for the kernel objects passed in the context of the classtype. For instance, task
classes pass only the task, while socket classes pass the socket kernel object
as well as the task object. Though the implementation of the classification
engine is completely independent of CKRM, the CKRM project provides a
default classification, called RBCE, that is based on classification rules. Rules
consist of a set of rule terms and a target class. A rule term specifies one
particular kernel object attribute, a comparision operator (=,<,>,!) and a value
expression. To speed up the classification process we maintain state with tasks
about which rules and rule terms have been examined for a particular task and
only reexamine those terms that are indicated by the event.

RBCE provides rules based on task parameters ((pid, gid, uid, executable) and
socket information (IP info). The rules in conjunction with the defined classes
constitute a site policy for workload managment and is dynamically changable
(See user interface section) into the RBCE. Hence, this approach ensures the
separation of policy and enforcement.

To facilitate the interaction with WLMs to provide event monitoring and tracing,
the CE can also register a notification callback with any classtype, that is called
when a kernel object is assigned to a new class. Similar so the classification
callback, the notification callback can be limited to a set of ckrm events. This
facility is utilized in the Resource Monitoring section described below.

Resource Scheduling

Providing differentiated service to resources such as CPU time, page frames or
resident set size (RSS), disk I/O bandwdith and number of accepted TCP
connections in the Linux kernel is the primary design objective of CKRM.
However, the CKRM project also has a design objective to provide class-based
differentiation through small extensions/modifications to the existing task-
centric schedulers in the kernel. This not only facilitates the integration of
CKRM into the mainline Linux kernel, but also permits it to continue to take
advantage of the advances in the underlying schedulers provided by the Linux
kernel development community.

The following sections describe the CKRM's resource controllers developed for
an earlier version of CKRM. In the earlier version, classes did not form a
hierarchy (all classes in the system were peers of each other) and there was a
single notion of resource share (compared to the upper and lower bounds in
the current version). As such, all the resource controllers are now being
redeveloped. However, since large parts of the design are expected to remain
the same and the controllers showed promising results, it is instructive to
describe the resource controllers.

CPU Controller

The CPU scheduler decides which task to run when and for how long. The Linux
cpu scheduler in 2.6, a.k.a the O(1) scheduler, is a multi-queue scheduler that
assigns a scheduler instance and an associated runqueue to each cpu. The per-
cpu runqueue consists of two arrays of task lists, the active array and the
expired array. Each array index represents a list of runnable tasks at their
respective priority level. Linux distinguishes 140 priority levels, 100 for
realtime tasks and 40 for timeshared tasks to map the -20..19 task nice levels.
The maximum time slice a regular task executes is a linear mapped function of
its priority into [10..200] msecs. After executing its timeslice, a task moves
from the active list to the expired list to guarantee that all tasks get a chance
to execute. When the active array is empty, expired and active arrays are
swapped. A task is defined as interactive, if its recent average sleep time
exceeds a threshold. Interactive tasks remain in the active queue. Every
250msecs and on idle processing the runqueues are rebalanced based on
runqueue length to ensure that a similar level of progress is made on each cpu.

In the class fair-share queueing extension (CFQ) we assign per-cpu runqueues
for each class. A hierachical scheduling scheme is utilized, that selects classes
for execution based on their consumed cycles and selects tasks within their
classes' local runqueue based on the existing O(1) scheduling semantics. This
makes performance isolation possible since tasks belonging to different classes
are now maintained in different run queues. At every scheduling decision we
first select the next class to run locally and within that class the best task to
run using the existing task selection algorithm. We contain the code changes to
the get_next_task()functionality. Local class objects (runqueue) maintain a
local effective class priority as

ecp(C) = R * ∑ cycles(C)/share(C) + top_prio

where cycles(C) represents the amount of CPU time received by class C, R is
a configurable proportionment value and top_prio (negative values present
higher priorities) represents the highest priority of the tasks within class C on a
particular cpu. For class selection, the class with min(ecp(C)) is chosen.
Similar to the per-class task runqueues, we maintain on each cpu a runqueue
of local runnable classes based on their ecp(C) of classes with tasks to run on
this cpu. This class runqueue is maintained as a sliding window, since ecp(C) is
a monotonically increasing function. When a class is reactivated, i.e. a task in
this class is reactivated and it is the only task locally for that class, its ecp(C) is
forced into the sliding window to ensure that dormant classes will catch up only
on its recently unused share and not on all its share since going dormant.

By combining both the progress
(cycles(C)/share(C)) and the
urgency (top_prio) together, our
class fair scheduler achieves accurate
proportional sharing while preserving
good interactive job support. This is
illustrated in Figure 2 for the uni-
processor case. Here 4 classes
(gold,silver,bronze,best effort) with
shares of 60,30,9,1 are defined and
each populated with 15 cpu bound
jobs (3 for for each nice value of
(-20,-10,0,10,19)). First, over a 30
minute run, each class obtained its
assigned share. Within each class the

relative fairness is also maintained in that cycles obtained per nice level is in
proportion to its priority and tasks within the same nice level obtain the same
cylces.

Figure 3 provides QoS for an
interactive task, where the silver
class is populated with a single
interactive job that sleeps for 200
msec and then executes for a finite
amount of time (50-500msecs). The
default cycles received under the O
(1) linux scheduler varies significantly
and degrades when the job becomes
more cpu-bound, while the CFQ
extension ensures that the cycles
received are close to the desired
share of 30%.

Figure 4 presents the wait time of a said interactive task and shows a
significantly smoother and more gracefully degrading wait functions.

Figure 2: Uni-processor throughput QoS

Figure 3: Uni-Processor Interactive QoS
Share Maintainence

Finally, the CFQ extension scale at
the same pace as the O(1) scheduler
introducing a fixed overhead of
aprox. .4 microseconds on average
where the two task case consumes 2
microseconds per context-switch and
the 256 task case consumes 5.5
microseconds.

So far we have demonstrated the
efficacy of CFQ on the uni-processor
case. In the multi-processor case we
perform load-balancing based on a
the concept of class pressure. The
epoch time of a set of tasks is
defined as the time required to

execute each task for it designated time slice. We then approximate the epoch
time of each class on each cpu by

EP(C,cpu) = ∑ ts(t) * ia(t)
where ts(t) is the priority based time slice of a task and ia(t) is a measure
of its interactive level (0..1). The class pressure on a particular cpu is then
defined as

P(C,cpu) = EP(C,cpu) / cpu_usage(C,cpu)
with cpu_usage(C,cpu) dentifying the actual recently consumed cycles by
class C on said cpu. Load balancing is then performed by balancing the
pressures of classes across different cpus. It is noteworthy that we do not try to
attempt to give each class its share on every cpu.

For a sufficiently loaded system, we observed that the overall class shares are
still maintained, and the QoS that tasks receive within a group same class,
same nice level) are still reasonable close (< 5%).

Memory Controller

Differentiated usage of physical memory has traditionally received very little
attention in operating systems resource management research. Waldspurger
[7] describes a method of proportionally sharing of physical memory between
virtual machines created by VMWare's ESX Server. While some of the ideas
described there such as the taxation of unused shares can be applied in our
context, it addresses a fundamentally different problem of sharing memory
across multiple OS kernels. In [8], a cooperative mechanism is described,
where kernel hints allow applications to regulate their memory consumption.

One of the major contributions of CKRM is providing simple and effective
control over the resident set size (RSS) of a class. We first describe the existing
mechanism for controlling physical memory in Linux 2.6.

A process' RSS, the number of physical page frames allocated to a process, is
critical in ensuring the progress of the corresponding application. An RSS which
is significantly lower than its average working set size can cause a process to
spend much of its time in page faults which also affects overall system

Figure 4: Uni-processor Interactive QoS
Response Time

performance due to the pressure on the I/O subsystem. Most VMMs, including
Linux, regulate memory usage only at system-wide granularity. Per-process
RSS limits are available but are rarely used due to the difficulty in estimating
working set sizes.

The default 2.6 Linux VMM controls system memory usage primarily through
page reclamation. The physical memory of a system is divided into three zones
- DMA (< 16 MB), Normal (16-896MB) and High (> 896 MB). The page
descriptors for page frames belonging to each zone are kept in three lists -
active, inactive and free. Recently accessed pages are kept in the active list
while older pages which are candidates for reclamation are kept in the inactive
list. The free list stores page frames ready for allocation. When system memory
falls below a threshold, the kernel's page swapper scans the inactive list
looking for page frames to reclaim. Clean pages containing unmodified data are
directly reclaimed into the free list after unmapping them from the appropriate
address spaces. Modified pages are scheduled for writeback to their backing
store (either a filesystem file or the swap file) and added to the free list after
the writeback completes.

When CKRM memory control is enabled, each class has an associated share
denoting the fraction of available physical memory to which it is entitled. The
CKRM memory controller follows two design principles to control the average
physical memory consumed by a class with minimal impact on overall system
performance. First, it only enforces class shares when overall system memory
is low. The threshold for share enforcement is the same as that for page
reclamation in a default system. This ensures the overhead of unnecessary
regulation and provides some insulation of system performance from share
settings that do not reflect the average working set size of a class. Second,
CKRM only enforces shares by modifying the page reclamation mechanism and
does not alter page frame allocation. This allows a smooth and gradual control
over average page frame usage.

Figure 5 shows the logical
representation of page reclamation in
CKRM. Each page frame descriptor in
the system is now associated with a
class. Statistics are maintained on the
number of page frames allocated to a
class. Consequently, at any given
time, each class is either below, at or
above its share of physical memory.
The page frames of a zone are
logically divided into per-class active,
inactive and free lists. When free
memory is low, the VMM chooses a
zone (as before) and then uses an
arbitrator function to choose a victim
class within the zone from amongst
the over-share classes. The inactive

pages of the victim class are evaluated to select victim page frames using the
same criteria as used in the default VMM. Victim pages are reclaimed either
directly or following a writeback as before. If system memory is still below the
threshold, the next victim class is chosen until sufficient page frames have

Figure 5: Class Aware Page Reclaimation

been reclaimed. The statistics on per-class usage are updated for use by
CKRM's monitoring facilities and the arbitrator.

The implementation of the above design does not use physically separate per-
class lists of pages so that pages can continue to be arranged in order of their
age. Instead, the same per-zone active, inactive and free lists are used with
modifications to the scanning functions to make them consider the class of a
page before its age, state etc. first. Pages belonging to under-share classes are
skipped during a scan. Doing a logical rather than physical separation of per-
class page lists preserves the benefits of selecting victim pages in system-wide
LRU order even amongst the over-share classes.

The CKRM memory controller was evaluated on a 2.4GHz Pentium 4 desktop
running Redhat Linux 9 and the 2.5.69 Linux kernel running using a simple
microbenchmark which allocates a variable number of pages and proceeds to
access them using a user-specified access pattern. Two classes, A and B, were
created, each running one instance of the microbenchmark. Each
microbenchmark was configured to consume 200MB of memory but Class A's
access frequency was set at twice that of Class B to cause some variance in
application progress. Against a total demand of 400 MB, the available system
memory was limited to 352 MB to ensure that regulation would be performed.

Figure 6 shows the actual memory
usage of classes (A,B) as their
shares were modified. The first bar
shows the memory usage under the
default VMM (without CKRM). Class
A is seen to consume more memory
than B due to its higher access
frequency which keeps more of its
pages in the active list (and hence
unreclaimable). With CKRM enabled,
as the class shares are varied from
(200M,152M) through (150M, 202M),

the usage of Class A decreases while that of B increases. As can be seen, the
usage of the classes closely tracks the share settings. During the experiments,
it took only a few seconds for the usage values to stabilize to the values shown
after a share setting had been changed.

I/O Controller

The CKRM I/O controller aims at providing class-based control over I/O
bandwidth of block devices, most commonly a disk. In Linux, I/O requests to a
block device are typically serviced through a single logical queue which is
managed by an I/O scheduler. CKRM modifies the I/O scheduler to enforce class
I/O bandwidth shares. We briefly describe the existing Linux I/O schedulers
followed by the specifics of CKRM I/O control.

The I/O scheduler in Linux forms the interface between the generic block layer
and the low level device drivers. The block layer provides functions which are
used by filesystems and the virtual memory manager to submit I/O requests to
block devices. These requests are transformed by the I/O scheduler, most
commonly by merging and sorting, before being made available to the low-

Figure 6: Differentiated memory usage by
two instances of memory microbenchmark

level device drivers (henceforth only called device drivers). Device drivers
consume the transformed requests and forward them, using device
specificprotocols, to the device controllers which perform the I/O. The mainline
Linux 2.6 kernel provides multiple I/O schedulers such as anticipatory,
deadline, linus and noop with anticipatory [9] being the default. The recently
proposed Complete Fair Queuing I/O scheduler [10] provides share-based
control over per-disk bandwidth for each process. CKRM's I/O controller is a
variant of CFQ which provides per-class control.

Figure 7 shows the structure of CKRM I/O control. The
single logical I/O request queue of a block device is
physically represented by several queues: one input
queue per class and one common output or dispatch
queue. Processes submit I/O requests through the
Virtual File System (VFS) using either synchronous or
asynchronous I/O system calls. Each of these requests
is associated with the class of the submitting process
and gets queued into the class-specific queue of the
block device. Each queue has an associated weight
which is proportional to its assigned share. When the
device driver is ready to service the next request, the
I/O scheduler moves requests from the class queues
to the common dispatch queue in proportion of their
weighted size. The device driver picks the next
request off the dispatch queue in FIFO order and
submits it to the device.

By giving primacy to class weight while transferring
requests to the driver, CKRM runs the risk of decreasing disk utilization due to
potentially higher seek overheads. To amortize this cost, requests are
transferred in batches from each class queue. As each batch is already sorted
in order of expected seek time during the input phase, seek overhead is
somewhat reduced. The batch size is a parameter that can be varied with 4
being the default.

Inbound Network Controller

Various OS implementations offer well established QoS infrastructure for
outbound bandwidth management, policy-based routing and Diffserv [11].
Linux in particular, has an elaborate infrastructure for traffic control [12] that
consists of queuing disciplines(qdisc) and filters. A qdisc consists of one or
more queues and a packet scheduler. It makes traffic conform to a certain
profile by shaping or policing. A hierarchy of qdiscs can be constructed jointly
with a class hierarchy to make different traffic classes governed by proper
traffic profiles. Traffic can be attributed to different classes by the filters that
match the packet header fields. The filter matching can be stopped to police
traffic above a certain rate limit. A wide range of qdiscs ranging from a simple
FIFO to classful CBQ or HTB are provided for outbound bandwidth
management, while only one ingress qdisc is provided for inbound traffic
filtering and policing. The traffic control mechanims can be used invarious
places where bandwidth is the primary resource to control.

Figure 7: CKRM I/O
Scheduler

Due to the above features, Linux is widely used for routers, gateways, edge
servers; in other words, in situtations where network bandwidth is the primary
resource to differentiate among classes.

When it comes to endservers networking, QoS has not received as much
attention since QoS is primarily governed by the systems resources such as
memory, CPU and I/O and less by network bandwidth. When we consider end-
to-end service quality, we should require networking QoS in the end servers as
exemplified in the fair share admission control mechanism proposed in this
section.

We present a simple change to the existing TCP accept mechanism to provide
differentiated service across priority classes. Recent work in this area has
introduced the concept of prioritized accept queues [13] and accept queue
schedulers using adaptive proportional shares to self-managed web [14].

In a typical TCP connection, the client initiates a request to connect to a server.
This connection request is queued in a global accept queue belonging to the
socket associated with the server's port. The server process picks up the next
queued connection request and services it. In effect, the incoming connections
to a particular TCP socket are serialized and handled in FIFO order. When the
incoming connection request load is higher than the level that can be handled
by the server requests have to wait in the accept queue until the next can be
picked up.

We replace the existing single accept queue per socket with multiple accept
queues, one for each priority class. Incoming traffic is mapped into one of the
priority classes and queued on the accept queue for that priority.

The accept queue implements a weighted fair scheduler such that the rate of
acceptance from a particular accept queue is proportional to the weight of the
queue. In the basic priority accept queue design proposed earlier in [15],
starvation of certain priority classes was a possibility as the accepting process
picked up connection requests in the order of descending priority.

The efficacy of the proportional accept queue mechanism is demonstrated by
an experiment. We used Netfilter[16] to MARK options to characterize traffic
into two priority classes with respective weights of 3:1. The server process
utilises a configurable number of threads to service the requests. The results
are shown in Figure 8. When the load is low and there are service threads
available no differentiation takes place and all requests are processed as they
arrive. Under higher load, requests are queued in the accept queue with class
1 receiving a proportionally higher service rate than class 2. The expriment was
repeated, maintaining a constant inbound connection request rate. The
proportions of the two classes were then switched to see the service rate for
the two classes reverse as seen in Figure 9.

Resource Monitoring

We now describe the monitoring infrastructure. Strictly speaking, the per-class
monitoring components are part of CKRM while the per-process components
are not. However, we shall describe them together as they both can be utilized
by goal-based WLMs. Furthermore, they are bundled with the classification
engine and utilize the CE's notification callback to obtain classification events.

The monitoring infrastructure illustrated in Figure 10 is based on the following
design principles:

1. Event-driven: Every significant event in the kernel that affectsthe state of a
task is recorded and reported back to the state-agent. The events of
importance are aperiodic such as process fork, exit and reclassification as
well as periodic events such as sampling. Commands sent by the state-agent
are also treated as events by the kernel module.

2. Communication Channel: A single logical communication channel is
maintained between the state-agent and the kernel module and is used for
transferring all commands and data. Most of the data flow is from the kernel
to user space in the form of records resulting from events.

3. Minimal Kernel State: The design minimizes the additional per-process
state that needs to be maintained within the kernel. Most of the state
needed for high level control purposes is kept within the state agent and
updated through the records sent by the kernel.

The state-agent, which can also be integrated within a WLM, maintains state on
each existing and exited task in the system and provides it to the WLM. Since
the operating system does not retain the state of exited processes, the state-
agent must maintain it for future consumption by the WLM. The state-agent
communicates with a kernel module through a single bidirectional
communication chan-nel, receiving updates to the process state in the form of
records and occasionally sending com-mands. Events in the kernel such as
process fork, exit, reclassify (resulting from change in any process attribute
such as gid, pid) cause records to be generated through functions provided by

Figure 9:Proportional Accept Queue
Results under change

Figure 8: Proportional AcceptQueue
Results

the kernel module.

Server tasks can assist the WLM by
informing it about the phase in
which they are operating (each
phase corresponds to a workload).
Such tasks invoke CKRM to set a
tag associated with their
task_struct in the kernel. CKRM
uses this event to reclassify the
task and also records the event (to
be transmitted to the WLM through
the state-agent). Other kernel
events that might cause a task to
be reclassified (such as the exec
and setuid system calls etc.) are
also noted by CKRM and passed to
the WLM through the state-agent.

In addition, CKRM performs
periodic sampling of each task's
state in the kernel to determine the
resource it is waiting on (if any), its
resource consumption so far and
the class to which it belongs. The
sample information is transmitted
to the state-agent. The WLM can
correlate the information with the

tag setting to statistically determine the resource consumption and delays of
both server and dedicated processes executing a workload.

Sampling is done through a kernel module function that is invoked by a self-
restarting kernel timer. Commands sent by the state-agent cause appropriate
functions in the kernel module to execute and also return data in the form of
records. The kernel components are kept simple and only minimal additional
state has to be maintained in the kernel. In particular, the kernel does not have
to maintain extra state about exited processes which introduces problems with
PID reusage, memory management to name a few. Instead, relevant task
information is replicated in user space, is by definition received in the correct
time order (see below) and can be kept around until the WLM has consumed
the information. Furthermore, the semantics of a reclassification in the kernel,
which identifies a new phase in a server process, does not have to be
introduced into the kernel space.

The following small changes are required to the linux kernel to track system
delays. The struct delay_info is added to the task_struct. Delay_info
contains 32-bit variables to store cpu delay, cpu using, io delay and memory io
delay. The counters provide micro second accuracy. The current cpu scheduler
records timestamps whenever a task i) becomes runnable and is entered into a
runqueue and ii) when a context switch occurs from one task to another. We
use these same timestamps to get per-task cpu wait and cpu using times
recorded respectively. I/O delays are measured by the difference of
timestamps taken when a task blocks waiting for I/O to complete and when it
returns. All I/O is normally attributed to the blocking task. Pagefault delays,

Figure 10: Monitoring and Control Approach

however, are treated as special I/O delays. On entrance to and exit from the
page fault handler the task is marked or unmarked as being in a memory path
using flags in task_struct. If during the I/O delay, this flag is set, the I/O delay
is counted as a memory delay instead of as a pure I/O delay. The per-task
delay information is accessible through the file /proc/<pid>/delay. Similarly,
each class contains a delay_info structure.

In contrast to the precise accounting of delays, sampling examines the state of
tasks at fixed interval. In particular, we sample at fixed intervals (≈1sec) the
entire set of tasks in the system and increment per task counters that are
integrated into the task private structure attached by the classification engine
that builds the core of the kernel module. We increment counters if a task is
running, waiting to run, performing I/O or handles a pagefault I/O.

Task data (sampled and/or precise) is requested by and sent to the state-agent
in coarser intervals. We can send data in continuous aggregate mode or in
delta mode, i.e. only if task data has changed do we send a new data record
and then reset the local counters.

The task transition events are sent at the time they occur. We distinguish the
fork, exit and reclassification events as records. At each reclassification (which
could potentially be the end of a phase) we transmit the sample and delay data
and reset them locally.

As a communication channel we utilize the linux relayfs pseudo filesystem, a
highly efficient mechanism to share data between kernel and user space. The
user accesses the shared buffers, called channels, as files, while the kernel
writes to them using buffer reservations and memory read/write operations.
The content and structure of the buffer is determined by the kernel and user
client. Currently the communication channel is self pacing. The underlying
relayfs channel buffer will dynamically resize upto a maximum size. If for any
reason the relayfs buffer overflows, record sending will automatically stop, an
indication is sent and the state-agent will have to drain the channel and
request a full state dump from the kernel.

We have measured the data rate during a standard kernel build, which creates
a significant amount of task events (fork,exec,exits). For a 2-CPU system with 2
seconds sample collection we observed a data rate of 8KB/second and a total
of 190 records/sec, well within a limit that can be processed without creating
significant overhead in the system.

User Interface

In the Linux kernel development community, filesystems have become very
popular as user interfaces to kernel functionality, going well beyond the
traditional use for disk-based persistent storage. The Linux kernel's object-
oriented Virtual File System (VFS) makes it easy to implement a custom
filesystem. Common file operations like open, close, read and write map
naturally to initalization, shutdown, kernel-to-user and user-to-kernel
communication. For CKRM, the tree structured namespace of a filesystem
offers the additional benefit of an intuitive representation of the class
hierarchy. Hence CKRM uses the Resource Control Filesystem (RCFS) as its user
interface.

The first-level directories in RCFS contain the roots of subtrees associated with
classtypes build or loaded into the kernel (socket_class and task_class
currently) and the classification engine (ce). Within the classtype subtrees,
directories represent classes. Users can create new classes by creating a
directory as long as they have the proper access rights.

Within the task_class directory, each directory represents a taskclass. /
rcfs/task_class, the root of the task_class classtype, represents the default
taskclass which is always present when CKRM is enabled in the kernel. Each
task_class directory contains a set of virtual files that are created automatically
when the directory is created. Each virtual file has a specific function as
follows:

1. members: Reading it gives the names of the tasks in the taskclass.

2. config: To get/set any configuration parameters specific to the taskclass.

3. target: Writing a task's pid to this file causes the task to be moved to the
taskclass, overriding any automatic classification that may have been
done by a classification engine.

4. shares: Writing to this file sets new lower and upper bounds of the
resource shares for the taskclass for each resource controller. Reading the
file returns the current shares. The controller name is specified on a write
which makes it possible to set the values for controllers independent of
each other.

5. stats: Reading the file returns the statistics maintained for the taskclass
by each resource controller in the system. Writing to the file (specifying
the controller) resets the stats for that controller.

The socket_class directory is somewhat similar. Directories under /
rcfs/socket_class/ represent listen classes and have the same magic files as
task_classes. Whereas task_classes use the pid to identify the class member,
socket_classes, which group listening sockets, use ip address + port name to
identify their members. Within each listen class, there are automatically
created directories, one for each accept queue class. The accept queue
directories, numbered 1 through 7, have their own shares and stats virtual files
similar to those for task_classes.

The /rcfs/ce directory is the user interface to the optional classification engine.
It contains the following virtual files and directory:

1. reclassify: writing a pid or ipadress+port to the file causes the
corresponding task or listen socket to be put back under the control of the
classification engine. On subsequent significant kernel events, the ce will
attempt to reclassify the task/socket to a new taskclass/socketclass if the
task/sockets attributes have changed.

2. state: to set/get the state (active or inactive) of the classification engine.
To allow a new policy to be loaded atomically, CE's can be set to inactive
before loading a set of rules and activated thereafter.

3. Rules: The directory allows privileged users to create files with each file
representing one rule. Reading the files, permitted for all, gives the
classiication policy which is currently active. The ordering of rules in a
policy is determined either by creation time of the corresponding file or by
an explicitly specified order number within the file. The rule files contain

rule terms consisting of attribute-value pairs and a target class. e.g. The
rule

gid=10, cmd = bash, target = /rcfs/task_class/A
indicates that tasks with gid=10 and running the bash program (shell) should
get reclassified to task_class A.

Future work

The consolidation of increasingly dynamic workloads on large server platforms
has considerably increased the complexity of systems management. To
address this, goal-oriented workload managers are being proposed which seek
to automate low-level system administration requiring human intervention only
for defining high level policies that reflect business goals.

In this paper, we argue that goal-oriented WLMs require support from the
operating system kernel for class-based differentiated service where a class is
a dynamic policy-driven grouping of OS processes. We introduce a framework,
called class-based kernel resource management, for classifying tasks and
incoming network packets into classes, monitoring their usage of physical
resources and controlling the allocation of these resources by the kernel
schedulers based on the shares assigned to each class. For each of four major
physical resources (CPU, disk, network and memory), we provide the design of
a proportional share scheduler using incremental modifications to the
corresponding existing schedulers. The framework is implemented in the Linux
2.6 kernel and is publicly available at http://ckrm.sf.net. The performance
evaluation of the schedulers and the flexibility of the framework demonstrate
that CKRM is a viable approach for building autonomic operating systems.

With the basic framework in place, there are several directions for future work.
We intend to explore the use of CKRM to manage virtual resources such as
limits on open files, processes, logins, locks etc. These are also traditionally
managed at a per-process or per-user granularity but are candidates for class-
based management. The individual schedulers need to be refined. The CPU
scheduler's load balancing design will be revisited. The memory controllers
treatment of shared memory pages can be significantly improved. We are also
examining alternate designs for memory controller that use explicit per-class
page lists.

Perhaps the most important direction for future work is the interactions of the
resource schedulers and the impact of these interactions on the shares
specified. CPU, memory, I/O and network share settings are interdependent in
OS specific ways. Exporting these interdependencies in the form of constraints
on share specifications might considerably increase the efficacy of feedback
control loops in the workload manager.

References

[1] AIX 5L Workload Manager
IBM Corp., http://www.redbooks.ibm.com/redbooks/SG245977.html

[2] Solaris Resource Manager
Sun Microsystems Inc, http://www.sun.com/software/resourcemgr/wp-srm

[3] HP-UX Workload Manager
Hewlett Packard Inc. http://h30081.www3.hp.com/products/wlm

[4] Adaptive algorithms for Managing a Distributed Data Processing
Workload. J. Aman and C.K. Eilert and D. Emmes and P. Yocom and D.
Dillenberger, IBM Systems Journal, volume 36(2), 1997.

[5] Resource Containers: A new facility for resource management in server
systems, G. Banga, P.Druschel, J.C. Mogul. Operating Systems Design and
Implementation, pages 45-58, 1999.

[6] Cluster reserves: a mechanism for resource management in cluster-
based network servers. M. Aron, P. Druschel, W.Zwenepoel.
Measurement and Modeling of Computer Systems, pg. 90-101,2000.

[7] Memory resource management in VMware ESX Server.
Carl A. Waldspurger. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), December 2002.

[8] Application-assisted physical memory management.
P.Druschel S.S.Iyer, J.Navarro. http://www.cs.rice.edu/~ssiyer/r/mem/

[9] Anticipatory I/O scheduling
Jonathan Corbet. http://lwn.net/Articles/21274

[10] The Continuing Development of I/O Scheduling
Jonathan Corbet. http://lwn.net/Articles/22526

[11] An Architecture for Differentiated Services
S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
RFC 2475, Dec 1998.

[12] Linux Advanced Routing & Traffic Control
Bert Hubert. http://www.lartc.org

[13] Kernel Mechanisms for Service Differentiation in Overloaded Web Servers
T. Voigt, R. Tewari, D. Freimuth, and A. Mehra.
2001 USENIX Annual Technical Conference, Jun 2001.

[14] An Observation-based Approach Towards Self-Managing Web Servers.
P. Pradhan, R. Tewari, S. Sahu, A. Chandra, and P. Shenoy.
In Intl. Workshop on Quality of Service (IWQoS}, 2002.

[15] Inbound connection control home page
IBM DeveloperWorks.http://www-124.ibm.com/pub/qos/paq_index.html

[16] Netfilter: Firewalling, NAT, and packet mangling for Linux 2.4.
J. Kadlecsik, H. Welte, J. Morris, M. Boucher, and R. Russel.
http://www.netfilter.org

